【題目】若|x﹣3|與|y+2|互為相反數(shù),則代數(shù)式x+y+3=

【答案】4
【解析】解:∵|x﹣3|與|y+2|互為相反數(shù),
∴|x﹣3|+|y+2|=0.
∴x=3,y=﹣2.
∴原式=3+(﹣2)+3=4.
所以答案是:4.
【考點(diǎn)精析】本題主要考查了相反數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握只有符號(hào)不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;相反數(shù)的和為0;a+b=0 :a、b互為相反數(shù)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2-3x+mm為常數(shù))的圖象與x軸的一個(gè)交點(diǎn)為(1,0),則關(guān)于x的一元二次方程x2-3x+m=0的兩實(shí)數(shù)根是(

A. x1=1,x2=-1 B. x1=1,x2=2 C. x1=1,x2=0 D. x1=1,x2=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣4,2,﹣1,3這四個(gè)數(shù)中,比﹣2小的數(shù)是( )
A.﹣4
B.2
C.﹣1
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是﹣2,

求:(1)一次函數(shù)的解析式;

(2)△AOB的面積;

(3)直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)y=-x2+bx+c的圖象與x軸相交于A(-5,0),B(-1,0).

(1)求這個(gè)二次函數(shù)的關(guān)系式;

(2)如果要通過適當(dāng)?shù)钠揭?/span>,使得這個(gè)函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),那么應(yīng)該怎樣平移?向右還是向左?或者是向上還是向下?應(yīng)該平移向個(gè)單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解決群眾看病難的問題,一種藥品連續(xù)兩次降價(jià),每盒的價(jià)格由原來的60元降至48.6元,則平均每次降價(jià)的百分率為 %.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P(25)x軸的距離為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線L;y=ax2+bx+c(其中a、b、c都不等于0), 它的頂點(diǎn)P的坐標(biāo)是,y軸的交點(diǎn)是M(0,c)我們稱以M為頂點(diǎn),對(duì)稱軸是y軸且過點(diǎn)P的拋物線為拋物線L的伴隨拋物線,直線PML的伴隨直線.

(1)請(qǐng)直接寫出拋物線y=2x2-4x+1的伴隨拋物線和伴隨直線的關(guān)系式:

伴隨拋物線的關(guān)系式_________________

伴隨直線的關(guān)系式___________________

(2)若一條拋物線的伴隨拋物線和伴隨直線分別是y=-x2-3y=-x-3, 則這條拋物線的關(guān)系是___________:

(3)求拋物線L:y=ax2+bx+c(其中abc都不等于0) 的伴隨拋物線和伴隨直線的關(guān)系式;

(4)若拋物線Lx軸交于A(x1,0),B(x2,0)兩點(diǎn)x2>x1>0,它的伴隨拋物線與x 軸交于C,D兩點(diǎn),AB=CD,請(qǐng)求出a、b、c應(yīng)滿足的條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年12月15日,嫦娥三號(hào)著陸器、巡視器順利完成互拍,把成像從遠(yuǎn)在地球38萬km之外的月球傳到地面,標(biāo)志著我國(guó)探月工程二期取得圓滿成功,將38萬用科學(xué)記數(shù)法表示應(yīng)為( )
A.0.38×106
B.0.38×105
C.3.8×104
D.3.8×105

查看答案和解析>>

同步練習(xí)冊(cè)答案