【題目】隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已成為很多市民出行的選擇,李華從文化宮站出發(fā),先乘坐地鐵,準備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家,設(shè)他出地鐵的站點與文化宮距離為x(單位:千米),乘坐地鐵的時間y1(單位:分鐘)是關(guān)于x的一次函數(shù),其關(guān)系如下表:
地鐵站 | A | B | C | D | E |
x(千米) | 8 | 9 | 10 | 11.5 | 13 |
y1(分鐘) | 18 | 20 | 22 | 25 | 28 |
(1)求y1關(guān)于x的函數(shù)解析式;
(2)李華騎單車的時間(單位:分鐘)也受x的影響,其關(guān)系可以用y2=x2-11x+78來描述,請問:李華應(yīng)選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時間最短?并求出最短時間.
【答案】(1)y1=2x+2.(2)李華應(yīng)選擇在B站出地鐵,才能使他從文化宮回到家所需的時間最短,最短時間為39.5分鐘.
【解析】
(1)根據(jù)表格中的數(shù)據(jù),運用待定系數(shù)法,即可求得y1關(guān)于x的函數(shù)表達式;(2)設(shè)李華從文化宮回到家所需的時間為y,則y=y1+y2=x2-9x+80,根據(jù)二次函數(shù)的性質(zhì),即可得出最短時間.
(1)設(shè)y1=kx+b,將(8,18),(9,20),代入
y1=kx+b,得:
解得
所以y1關(guān)于x的函數(shù)解析式為y1=2x+2.
(2)設(shè)李華從文化宮回到家所需的時間為y,則
y=y1+y2=2x+2+x2-11x+78=x2-9x+80=(x-9)2+39.5.
所以當x=9時,y取得最小值,最小值為39.5,
答:李華應(yīng)選擇在B站出地鐵,才能使他從文化宮回到家所需的時間最短,最短時間為39.5分鐘.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC與△DEC是兩個大小不同的等腰直角三角形.
(1)如圖①所示,連接AE,DB,試判斷線段AE和DB的數(shù)量和位置關(guān)系,并說明理由;
(2)如圖②所示,連接DB,將線段DB繞D點順時針旋轉(zhuǎn)90°到DF,連接AF,試判斷線段DE和AF的數(shù)量和位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團隊抓住商機,購進一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費用80元.
(1)請直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如果每天獲得160元的利潤,銷售單價為多少元?
(3)設(shè)每天的利潤為w元,當銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題解決:如圖1,在平面直角坐標系xOy中,一次函數(shù)與x軸交于點A,與y軸交于點B,以AB為腰在第二象限作等腰直角,,點A、B的坐標分別為A______、B______.
求中點C的坐標.小明同學(xué)為了解決這個問題,提出了以下想法:過點C向x軸作垂線交x軸于點請你借助小明的思路,求出點C的坐標;
類比探究:數(shù)學(xué)老師表揚了小明同學(xué)的方法,然后提出了一個新的問題,如圖2,在平面直角坐標系xOy中,點A坐標,點B坐標,過點B作x軸垂線l,點P是l上一動點,點D是在一次函數(shù)圖象上一動點,若是以點D為直角頂點的等腰直角三角形,請直接寫出點D與點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在等腰直角三角形△DBC中,∠BDC=90°,BF平分∠DBC,與CD相交于點F,延長BD到A,使DA=DF,
(1)試說明:△FBD≌△ACD;
(2)延長BF交AC于E,且BE⊥AC,試說明:CE=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強公民的節(jié)水意識,合理利用水資源,各地采用價格調(diào)控手段達到節(jié)約用水的目的,某市規(guī)定如下用水收費標準:每戶每月的用水量不超過6立方米時,水費按每立方米a元收費,超過6立方米時,不超過的部分每立方米仍按a元收費,超過的部分每立方米按c元收費,該市某戶今年9、10月份的用水量和所交水費如下表所示:
設(shè)某戶每月用水量x(立方米),應(yīng)交水費y(元)
(1)a= ,c=
(2)當x≤6,x≥6時,分別求出y于x的函數(shù)關(guān)系式
(3)若該戶11月份用水量為8立方米,求該戶11 月份水費是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖 1,△ABC 和△ADE 都是等腰直角三角形,∠BAC 和∠DAE 是直角,連接BD,CE 相交于點 F,則∠BFC= °
(2)如圖 2,△ABC 和△ADE 都是等邊三角形,連接 BD,CE 相交于點 F,則∠BFC= °
(3)如圖 3,△ABC 和△ADE 都是等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,連接 BD,CE相交于點 F,請猜想∠BFC 與∠BAC 有怎樣的大小關(guān)系?請證明你的猜想
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com