【題目】下圖顯示了用計算機模擬隨機拋擲一枚硬幣的某次實驗的結(jié)果

下面有三個推斷:

①當拋擲次數(shù)是100時,計算機記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;

②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5;

③若再次用計算機模擬此實驗,則當拋擲次數(shù)為150時,“正面向上”的頻率一定是0.45

其中合理的是

A. B. C. ①② D. ①③

【答案】B

【解析】①當拋擲次數(shù)是100時,計算機記錄“正面向上”的次數(shù)是47,因試驗次數(shù)比較少,所以只能說“正面向上”的頻率是0.47,不能說概率是0.47,故不正確;

②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5,故正確;

③若再次用計算機模擬此實驗,則當拋擲次數(shù)為150時,“正面向上”的頻率不一定是0.45,故不正確.

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知梯形 ABCD 中,ADBC,對角線 ACBD 相交于點O, AOB 與△BOC 的面積分別為 4、8,則梯形ABCD 的面積等于___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班數(shù)學興趣小組對不等式組,討論得到以下結(jié)論:①若a5,則不等式組的解集為3<x≤5;②若a2,則不等式組無解;③若不等式組無解,則a的取值范圍為a<3;④若不等式組只有兩個整數(shù)解,則a的值可以為5.1,其中,正確的結(jié)論的序號是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△和△中,,分別為邊和邊上的中線,再從以下三個條件:①;②;③中任取兩個為已知條件,另一個為結(jié)論,則最多可以構(gòu)成_______個正確的命題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標系內(nèi),△ABC的三個頂點坐標分別為A(1,4),B(1,1),C(3,1).

(1)畫出△ABC關于x軸對稱的△A1B1C1;

(2)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△A2B2C2;

(3)在(2)的條件下,求線段BC掃過的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖, 是半圓的直徑,D是半圓上的一個動點(點D不與點A,B 重合),

1)求證:AC是半圓的切線;

2)過點OBD的平行線,交AC于點E,交AD于點F,EF=4, AD=6, BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019年,在新泰市美麗鄉(xiāng)村建設中,甲、乙兩個工程隊分別承擔某處村級道路硬化和道路拓寬改造工程.己知道路硬化和道路拓寬改造工程的總里程數(shù)是86千米,其中道路硬化的里程數(shù)是道路拓寬里程數(shù)的2倍少1千米.

1)求道路硬化和道路拓寬里程數(shù)分別是多少千米;

2)甲、乙兩個工程隊同時開始施工,甲工程隊比乙工程隊平均每天多施工10米.由于工期需要,甲工程隊在完成所承擔的施工任務后,通過技術改進使工作效率比原來提高了.設乙工程隊平均每天施工米,若甲、乙兩隊同時完成施工任務,求乙工程隊平均每天施工的米數(shù)和施工的天數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,C=90°,AC=4cm,BC=3cm.動點M,N從點C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點A,B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動,連接PM,PN,設移動時間為t(單位:秒,0<t<2.5).

(1)當t為何值時,以A,P,M為頂點的三角形與ABC相似?

(2)是否存在某一時刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+x+4的對稱軸是直線x=3,且與軸相交于A、B兩點(B點在A點的右側(cè)),與軸交于C點.

(1)A點的坐標是   ;B點坐標是   ;

(2)直線BC的解析式是:   ;

(3)點P是直線BC上方的拋物線上的一動點(不與B、C重合),是否存在點P,使△PBC的面積最大.若存在,請求出△PBC的最大面積,若不存在,試說明理由;

(4)若點Mx軸上,點N在拋物線上,以A、C、M、N為頂點的四邊形是平行四邊形時,請直接寫出點M點坐標.

查看答案和解析>>

同步練習冊答案