【題目】ABC中,AB=CB,ABC=90°,F(xiàn)為AB延長線上一點,點E在BC上,且AE=CF.

(1)求證:RtABERtCBF;

(2)若CAE=30°,求ACF的度數(shù).

【答案】(1)見解析;(2)60°

【解析】

試題分析:(1)由AB=CB,ABC=90°,AE=CF,即可利用HL證得RtABERtCBF;

(2)由AB=CB,ABC=90°,即可求得CABACB的度數(shù),即可得BAE的度數(shù),又由RtABERtCBF,即可求得BCF的度數(shù),則由ACF=BCF+ACB即可求得答案.

(1)證明:∵∠ABC=90°,

∴∠CBF=ABE=90°

在RtABE和RtCBF中,

RtABERtCBF(HL);

(2)解:AB=BCABC=90°,

∴∠CAB=ACB=45°,

∵∠BAE=CABCAE=45°﹣30°=15°,

由(1)知:RtABERtCBF,

∴∠BCF=BAE=15°,

∴∠ACF=BCF+ACB=45°+15°=60°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三角形ABO中,A(﹣2,﹣3)、B(2,﹣1),三角形A′B′O′是三角形ABO平移之后得到的圖形,并且O的對應點O′的坐標為(4,3).

(1)求三角形ABO的面積;

(2)作出三角形ABO平移之后的圖形三角形A′B′O′,并寫出A′、B′兩點的坐標分別為A′   、B′   

(3)P(x,y)為三角形ABO中任意一點,則平移后對應點P′的坐標為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,已知,可得=______

(2)如圖2,在(1)的條件下,如果平分,=________

(3)如圖3,在(1)(2)的條件下,如果,=_________;

(4)嘗試解決下面問題:如圖4,,,的平分線,,的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】感知:如圖1,在ABC中,∠ABC=42°,ACB=72°,點DAB上一點,EAC上一點,BE、CD相交于點F.

(1)若∠ACD=35°,ABE=20°,求∠BFC的度數(shù);

(2)若CD平分∠ACBBE平分∠ABC,求∠BFC的度數(shù);

探究:如圖2,在ABC中,BE平分∠ABC,CD平分∠ACB,寫出∠BFC與∠A之間的數(shù)量關系,并說明理由;

應用:如圖3,在ABC中,BD平分∠ABC ,CD平分外角∠ACE,請直接寫出∠BDC與∠A之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】楊陽同學沿一段筆直的人行道行走,在由A步行到達B處的過程中,通過隔離帶的空隙O,剛好瀏覽完對面人行道宣傳墻上的社會主義核心價值觀標語,其具體信息匯集如下:

如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請根據(jù)上述信息求標語CD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】北京奧運會體育場的鳥巢鋼結構工程施工建設中,首次使用了我國科研人員自主研制的強度為4.6×108帕的鋼材,那么它的原數(shù)是(

A.4600000B.46000000C.460000000D.4600000000

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,點B在數(shù)軸上分別表示 6.5,x.點B在點A的左邊,且點A,點B之間有9個整數(shù),則x的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,王虎使一長為4 cm,寬為3 cm的長方形木板,在桌面上做無滑動地翻滾(順時針方向),木板上點A位置變化為AA1A2,其中第二次翻滾被桌面上一小木塊擋住,使木板與桌面成30°角,則點A翻滾到A2位置時共走過的路徑長為?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】你能用一張長方形的紙片折出一個正三角形嗎?動手試一試,簡單敘述你的折法.

查看答案和解析>>

同步練習冊答案