【題目】如圖所示,在每個(gè)邊長都為1的小正方形組成的網(wǎng)格中,點(diǎn)A,B,C均為格點(diǎn).
(Ⅰ)線段AB的長度等于
(Ⅱ)若P為線段AB上的動(dòng)點(diǎn),以PC、PA為鄰邊的四邊形PAQC為平行四邊形,當(dāng)PQ長度最小時(shí),請(qǐng)你借助網(wǎng)格和無刻度的直尺畫出該平行四邊形,并簡要說明你的作圖方法(不要求證明).

【答案】解:(Ⅰ)線段AB的長度為: =5;(Ⅱ)如圖所示:四邊形PAQC即為所求.

故答案為:5.
【解析】(Ⅰ)根據(jù)勾股定理可求線段AB的長度;(Ⅱ)取格點(diǎn)D,E,F(xiàn),連結(jié)DE與AB交于點(diǎn)P,延長ED與CF交于點(diǎn),四邊形PAQC即為所求.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將連續(xù)正整數(shù)按如下規(guī)律排列:

若正整數(shù)567位于第a行,第b列,則ab的和是( 。

A. 256 B. 239 C. 159 D. 145

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生參加戶外活動(dòng)的情況,和諧中學(xué)對(duì)學(xué)生每天參加戶外活動(dòng)的時(shí)間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖示,請(qǐng)回答下列問題:
(Ⅰ)被抽樣調(diào)查的學(xué)生有 人,并補(bǔ)全條形統(tǒng)計(jì)圖 ;
(Ⅱ)每天戶外活動(dòng)時(shí)間的中位數(shù)是 (小時(shí));
(Ⅲ)該校共有2000名學(xué)生,請(qǐng)估計(jì)該校每天戶外活動(dòng)時(shí)間超過1小時(shí)的學(xué)生有 人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了節(jié)約用水,對(duì)自來水的收費(fèi)標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水不超過10噸的部分,按2/噸收費(fèi);超過10噸的部分按2.5/噸收費(fèi).

1)若黃老師家5月份用水16噸,問應(yīng)交水費(fèi)多少元?

2)若黃老師家6月份交水費(fèi)30元,問黃老師家5月份用水多少噸?

3)若黃老師家7月用水a噸,問應(yīng)交水費(fèi)多少元?(用a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】歷史上的數(shù)學(xué)巨人歐拉最先把關(guān)于x的多項(xiàng)式用記號(hào)f(x)來表示,例如f(x)=x2+3x﹣5,把x=某數(shù)時(shí)多項(xiàng)式的值用f(某數(shù))來表示,例如x=1時(shí)多項(xiàng)式x2+3x﹣5的值記為f(1)=12+3×1﹣5=﹣1.

(1)已知g(x)=﹣2x2﹣3x+1,分別求出g(﹣1)和g(﹣2)的值.

(2)已知h(x)=ax3+2x2﹣x﹣14,,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在BC上,BD=3,DC=1,點(diǎn)P是AB上的動(dòng)點(diǎn),則PC+PD的最小值為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,,的平分線與BC的延長線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),,垂足為G,若,則AE的邊長為  

A. B. C. 4 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=20,

(1)寫出數(shù)軸上點(diǎn)B表示的數(shù)   ;

(2)|5﹣3|表示53之差的絕對(duì)值,實(shí)際上也可理解為53兩數(shù)在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離.如|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)x的點(diǎn)與表示有理數(shù)3的點(diǎn)之間的距離.試探索:

①:若|x﹣8|=2,則x=   

:|x+12|+|x﹣8|的最小值為   

(3)動(dòng)點(diǎn)PO點(diǎn)出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.求當(dāng)t為多少秒時(shí)?A,P兩點(diǎn)之間的距離為2;

(4)動(dòng)點(diǎn)P,Q分別從O,B兩點(diǎn),同時(shí)出發(fā),點(diǎn)P以每秒5個(gè)單位長度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),Q點(diǎn)以P點(diǎn)速度的兩倍,沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.問當(dāng)t為多少秒時(shí)?P,Q之間的距離為4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】題目:在同一平面上,若∠AOB=75°,BOC=15°,求∠AOC的度數(shù).

下面是七(2)班馬小虎同學(xué)的解題過程:

解:根據(jù)題意畫出圖形,如圖所示,

∵∠AOC=AOB-BOC=75°-75°=60°

∴∠AOC=60°

若你是老師,會(huì)判馬小虎滿分嗎?若會(huì),說明理由;若不會(huì),請(qǐng)指出錯(cuò)誤之處,并給出你認(rèn)為正確的解法.

查看答案和解析>>

同步練習(xí)冊(cè)答案