【題目】如圖,在一筆直的海岸線上有兩個觀測站,的正東方向,(單位:)有一艘小船在點處,從測得小船在北偏西的方向,從測得小船在北偏東的方向(結果保留根號)

(1)求點到海岸線的距離;

(2)小船從點處沿射線的方向航行一段時間后,到達點處,此時,從測得小船在北偏西的方向,求點與點之間的距離

【答案】(1)點P到海岸線l的距離為km.(2)C與點B之間的距離為km.

【解析】試題分析:(1)過點PPD⊥AB于點D,中,可得,,由,即可得PD的長;(2)過點BBE⊥AC于點E,在Rt△ABE,得出BE=AB=1km,S所以BC=BF=km;(3)

試題解析:

)過點

中,

,

,

,

∴點到海岸線的距離為

)∵,,

,

過點

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在長方形ABCD中,AB=12cm,BC=10cm,點PA出發(fā),沿A→B→C→D的路線運動,到D停止;點QD點出發(fā),沿D→C→B→A路線運動,到A點停止.若P、Q兩點同時出發(fā),速度分別為每秒lcm、2cm,a秒時P、Q兩點同時改變速度,分別變?yōu)槊棵?/span>2cm、cm(P、Q兩點速度改變后一直保持此速度,直到停止),如圖2是△APD的面積s(cm2)和運動時間x(秒)的圖象.

(1)求出a值;

(2)設點P已行的路程為y1(cm),點Q還剩的路程為y2(cm),請分別求出改變速度后,y1、y2和運動時間x(秒)的關系式;

(3)P、Q兩點都在BC邊上,x為何值時P、Q兩點相距3cm?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形中,延長使,以為邊作正方形,延長,連接,,的中點,連接分別與,交于點.則下列說法:①;②;③;④.其中正確的有(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖①,正方形的兩邊分別在正方形的邊上,連接.填空:線段的數(shù)量關系為________;直線所夾銳角的大小為________

2)如圖②,將正方形繞點順時針旋轉,在旋轉的過程中,(1)中的結論是否仍然成立,請說明理由.

3)把圖②中的正方形都換成菱形,且,如圖③,直接寫出______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形中,,,動點出發(fā),以每秒1個單位的速度沿射線方向移動,作關于直線的對稱,設點的運動時間為

1)當時.

①如圖2.當點落在上時,顯然是直角三角形,求此時的值;

②當點不落在上時,請直接寫出是直角三角形時的值;

2)若直線與直線相交于點,且當時,.問:當時,的大小是否發(fā)生變化,若不變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某化妝品店老板到廠家選購A、B兩種品牌的化妝品,若購進A品牌的化妝品5套,B品牌的化妝品6套,需要950元;若購進A品牌的化妝品3套,B品牌的化妝品2套,需要450元.

A、B兩種品牌的化妝品每套進價分別為多少元?

若銷售1A品牌的化妝品可獲利30元,銷售1B品牌的化妝品可獲利20元,根據(jù)市場需求,化妝品店老板決定,購進B品牌化妝品的數(shù)量比購進A品牌化妝品數(shù)量的2倍還多4套,且B品牌化妝品最多可購進40套,這樣化妝品全部售出后,可使總的獲利不少于1200元,問有幾種進貨方案?如何進貨?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與軸交于點,與軸交于、兩點,其中、是方程的兩根,且

)求拋物線的解析式;

)直線上是否存在點,使為直角三角形.若存在,求所有點坐標;反之說理;

)點軸上方的拋物線上的一個動點(點除外),連、,若設的面積為 點橫坐標為,則在何范圍內(nèi)時,相應的點有且只有個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校在經(jīng)典朗讀活動中,對全校學生用A、BC、D四個等級進行評價,現(xiàn)從中抽取若干名學生進行調查,繪制出兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中的信息解答下列問題:

(1)被調查的學生共有 人,圖2A等級所占的圓心角為_ 度。

(2)補全折線統(tǒng)計圖。

(3)若該校共有學生1500人,請你估計全校評價B等級學生的人數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標系中,如圖(2).

求(1)拋物線的解析式;

(2)兩盞景觀燈P1、P2之間的水平距離.

查看答案和解析>>

同步練習冊答案