【題目】如圖,已知點(diǎn)I是△ABC的角平分線的交點(diǎn).若AB+BI=AC,設(shè)∠BAC=α,則∠AIB=______(用含α的式子表示)
【答案】
【解析】
在AC上截取AD=AB,易證△ABI≌△ADI,所以BI=DI,由AB+BI=AC,可得DI=DC,
設(shè)∠DCI=β,則∠ADI=∠ABI=2β,然后用三角形內(nèi)角和可推出β與α的關(guān)系,進(jìn)而求得∠AIB.
解:如圖所示,在AC上截取AD=AB,連接DI,
點(diǎn)I是△ABC的角平分線的交點(diǎn)
所以有∠BAI=∠DAI,∠ABI=∠CBI,∠ACI=∠BCI,
在△ABI和△ADI中,
∴△ABI≌△ADI(SAS)
∴DI=BI
又∵AB+BI=AC,AB+DC=AC
∴DI=DC
∴∠DCI=∠DIC
設(shè)∠DCI=∠DIC=β
則∠ABI=∠ADI=2∠DCI=2β
在△ABC中,
∠BAC+2∠ABI+2∠DCI=180°,即,
∴
在△ABI中,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=x+3交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)C是點(diǎn)A關(guān)于y軸對(duì)稱的點(diǎn),過點(diǎn)C作y軸平行的射線CD,交直線AB與點(diǎn)D,點(diǎn)P是射線CD上的一個(gè)動(dòng)點(diǎn).
(1)求點(diǎn)A,B的坐標(biāo).
(2)如圖2,將△ACP沿著AP翻折,當(dāng)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′落在直線AB上時(shí),求點(diǎn)P的坐標(biāo).
(3)若直線OP與直線AD有交點(diǎn),不妨設(shè)交點(diǎn)為Q(不與點(diǎn)D重合),連接CQ,是否存在點(diǎn)P,使得S△CPQ=2S△DPQ,若存在,請(qǐng)求出對(duì)應(yīng)的點(diǎn)Q坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中點(diǎn),連結(jié)BE并延長交AD的延長線于G.
(1)求證:DG=BC;
(2)F是AB邊上的動(dòng)點(diǎn),當(dāng)F點(diǎn)在什么位置時(shí),FD∥BG;說明理由.
(3)在(2)的條件下,連結(jié)AE交FD于H,FH與HD長度關(guān)系如何?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的邊BC上的高,再添加下列條件中的某一個(gè)就能推出△ABC是等腰三角形.①BD=CD;②∠BAD=∠CAD;③AB+BD=AC+CD; ④AB-BD=AC-CD;⑤∠BAD=∠ACD.可以添加的條件序號(hào)正確答案是( )
A.①②B.①②③C.①②③④D.①②③④⑤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2 cm/s的速度沿BA向點(diǎn)A勻速移動(dòng).當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng).DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5).
解答下列問題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最小?若存在,求出y的最小值;若不存在,說明理由.
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,為三角形的角平分線,于點(diǎn)交于點(diǎn)
(1)若,直接寫出 度
(2)若,
①求證:
②若,直接寫出 (用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸相交于點(diǎn),直線經(jīng)過點(diǎn),與軸交于點(diǎn),與軸交于點(diǎn),與直線相交于點(diǎn).
求直線的函數(shù)關(guān)系式;
點(diǎn)是上的一點(diǎn),若的面積等于的面積的倍,求點(diǎn)的坐標(biāo).
設(shè)點(diǎn) 的坐標(biāo)為 ,是否存在 的值使得 最?若存在,請(qǐng)求出點(diǎn) 的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有兩條公路OM,ON相交成30°,沿公路OM方向離兩條公路的交叉處O點(diǎn)80米的A處有一所希望小學(xué),當(dāng)拖拉機(jī)沿ON方向行駛時(shí),路兩旁50米內(nèi)會(huì)受到噪音影響,已知有兩臺(tái)相距30米的拖拉機(jī)正沿ON方向行駛,它們的速度均為5米/秒,問這兩臺(tái)拖拉機(jī)沿ON方向行駛時(shí)給小學(xué)帶來噪音影響的時(shí)間是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com