【題目】如圖,直線與軸相交于點,直線經(jīng)過點,與軸交于點,與軸交于點,與直線相交于點.
求直線的函數(shù)關(guān)系式;
點是上的一點,若的面積等于的面積的倍,求點的坐標.
設點 的坐標為 ,是否存在 的值使得 最?若存在,請求出點 的坐標;若不存在,請說明理由.
【答案】(1)y=x-2;(2)( ,)或(, );(3)(,3).
【解析】
(1)把點(3,-1),點B(6,0)代入直線l2,求出k、b的值即可;
(2)設點P的坐標為(t, t-2),求出D點坐標,再由S△ABP=2S△ABD求出t的值即可;
(3)作直線y=3,作點A關(guān)于直線y=3的對稱點A′,連結(jié)A′B,利用待定系數(shù)法求出其解析式,根據(jù)點Q(m,3)在直線A′B上求出m的值,進而可得出結(jié)論.
解:(1)由題知:
解得:
,
故直線l2的函數(shù)關(guān)系式為:y=x-2;
(2)由題及(1)可設點P的坐標為(t, t-2).
解方程組 ,得 ,
∴點D的坐標為(,-).
∵S△ABP=2S△ABD,
∴AB|t-2|=2×AB|-|,即|t-2|=,解得:t=或t=,
∴點P的坐標為( ,)或(, );
(3)作直線y=3(如圖),再作點A關(guān)于直線y=3的對稱點A′,連結(jié)A′B.
由幾何知識可知:A′B與直線y=3的交點即為QA+QB最小時的點Q.
∵點A(3,0),
∴A′(3,6)
∵點B(6,0),
∴直線A′B的函數(shù)表達式為y=-2x+12.
∵點Q(m,3)在直線A′B上,
∴3=-2m+12
解得:m=,
故存在m的值使得QA+QB最小,此時點Q的坐標為(,3).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,函數(shù)y=x的圖象與函數(shù)y的圖象相交于點P(1,m).
(1)求 m,k 的值.
(2)直線 y=2與函數(shù)y=x的圖象相交于點A,與函數(shù)y的圖象相交于點B,求線段 AB 長.
(3)直接寫出不等式x的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,平分.
(1)尺規(guī)作圖:作線段的垂直平分線;(要求:保留作圖痕跡,不寫作法)
(2)記直線與,的交點分別是點,,連接求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,AB=AC,EF=EG,△ABC≌△EFG,AD⊥BC于點D,EH⊥FG于點H
(1) 直接寫出AD、EH的數(shù)量關(guān)系:___________________
(2) 將△EFG沿EH剪開,讓點E和點C重合
① 按圖2放置△EHG,將線段CD沿EH平移至HN,連接AN、GN,求證:AN⊥GN
② 按圖3放置△EHG,B、C(E)、H三點共線,連接AG交EH于點M.若BD=1,AD=3,求CM的長度
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了維護國家主權(quán)和海洋權(quán)力,海監(jiān)部門對我國領(lǐng)海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務的海監(jiān)船以每小時50海里的速度向正東方航行,在處測得燈塔在北偏東方向上,繼續(xù)航行1小時到達處,此時測得燈塔在北偏東方向上.
(1)求的度數(shù);
(2)已知在燈塔的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線分別與軸、軸交于點,,已知點的坐標為,點的坐標為,點是該直線上的一個動點.
(1)________;的坐標為__________;
(2)若點在第二象限內(nèi)運動,試寫出的面積關(guān)于的函數(shù)解析式.
(3)探究:若點在該直線上任意運動,當的面積為6時,點的坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點,且DE=BF,連接AE、AF、EF.
(1)求證:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE繞旋轉(zhuǎn)中心 點,按順時針方向旋轉(zhuǎn) 度得到;
(3)若BC=8,DE=6,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,拋物線的頂點D的坐標為(1,-4),且與y軸交于點
C(0,3)
求該函數(shù)的關(guān)系式;
求改拋物線與x軸的交點A,B的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com