【題目】探究題
(1)問(wèn)題發(fā)現(xiàn)
如圖1,△ABC和△BDE均為等邊三角形,點(diǎn)A,D,E在同一直線(xiàn)上,連接CD.填空;

①CDB的度數(shù)為;
②線(xiàn)段AE,CD之間的數(shù)量關(guān)系為
(2)拓展探究
如圖2,△ABC和△DBE均為等腰直角三角形,∠ABC=∠DBE=90°,點(diǎn)A,D,E在同一直線(xiàn)上,BF為△DBE中DE邊上的高,連接CD.
①求∠CDB的大;
②請(qǐng)判斷線(xiàn)段BF,AD,CD之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)解決問(wèn)題
如圖3,在正方形ABCD中,AC=2 ,AE=1,CE⊥AE于E,請(qǐng)補(bǔ)全圖形,求點(diǎn)B到CE的距離.

【答案】
(1)60°;AE=CD
(2)

解:∠CDB=45°,CD=AD+2BF

理由:∵△ACB和△DBE均為等腰直角三角形,

∴BA=CB,BD=BE,∠ABC=∠DBE=90°.

∴∠ABE=∠CBD.

在△BCD和△BAE中,

∵AB=BC,∠ABE=∠CBD,BD=BE,

∴△BCD≌△BAE(SAS),

∴∠CDB=∠AEB,CD=AE

∵BF是△DBE均為等腰直角三角形,

∴∠CDB=∠AEB=45,DE=2BF,

∴CD=AE=AD+DE=AD+2BF.

∴∠CDB=45°,CD=AD+2BF


(3)

解:①如圖,

連接EB,ED,作BH⊥CE,BP⊥BE,

∵四邊形ABCD是正方形,

∴∠BAC=45°,AB=AD=CD=BC=2,∠ABC=90°,

∴CD=2,

∴AC=2 ,

∵AE=1,

∴CE= ,

∵A,E,B,C四點(diǎn)共圓,

∴∠BCE=∠CAB=45°,

∴△PBE是等腰直角三角形,

∵△ABC是等腰直角三角形,且C,E,P共線(xiàn),BH⊥CE,

∴由(2)的結(jié)論可得,CE=AE+2BH,

=2BH+1,

∴BH=

②同①的方法可得,CE=2BH﹣AE,

=2BH﹣1,

∴BH=

∴點(diǎn)B到CE的距離為


【解析】解:(1)①∵△ACB和△DBE均為等邊三角形,
∴BA=CB,BD=BE,∠ABC=∠DBE=60°.
∴∠ABE=∠CBD.
在△BCD和△BAE中,
∵AB=BC,∠ABE=∠CBD,BD=BE,
∴△BCD≌△BAE(SAS),
∴∠CDB=∠BEA.
∵△DBE為等邊三角形,
∴∠CDB=∠BED=60°.
所以答案是:60°.
②∵△BCD≌△BAE,
∴CD=AE,
所以答案是:CD=AE,
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰三角形的性質(zhì)的相關(guān)知識(shí),掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng):等邊對(duì)等角).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副三角板按如圖擺放,其中△ABC為含有45度角的三角板,直線(xiàn)AD是等腰直角三角形ABC的對(duì)稱(chēng)軸,且將△ABC分成兩個(gè)等腰直角三角形,DM、DN分別與邊AB、AC交于E、F兩點(diǎn),有下列四個(gè)結(jié)論:①BD=AD=CD②△AED≌△CFD③BE+CF=EF④S四邊形AEDFAB2.其中正確結(jié)論是_____(填寫(xiě)正確序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形MNPQ中,動(dòng)點(diǎn)R從點(diǎn)N出發(fā),沿著N→P→Q→M方向運(yùn)動(dòng)至點(diǎn)M處停下,設(shè)點(diǎn)R運(yùn)動(dòng)的路程為x,△MNR的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示,則下列說(shuō)法不正確的是( )

A.當(dāng)x=2時(shí),y=5
B.矩形MNPQ的面積是20
C.當(dāng)x=6時(shí),y=10
D.當(dāng)y= 時(shí),x=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線(xiàn)AC,BD交于點(diǎn)O,E為AB中點(diǎn),點(diǎn)F在CB的延長(zhǎng)線(xiàn)上,且EF∥BD.
(1)求證;四邊形OBFE是平行四邊形;
(2)當(dāng)線(xiàn)段AD和BD之間滿(mǎn)足什么條件時(shí),四邊形OBFE是矩形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,直線(xiàn)y=kx+bx軸交于點(diǎn)A(6,0),與y軸交于點(diǎn)B,與直線(xiàn)y=2x交于點(diǎn)C(a,4).

(1)求點(diǎn)C的坐標(biāo)及直線(xiàn)AB的表達(dá)式;

(2)如圖2,在(1)的條件下,過(guò)點(diǎn)E作直線(xiàn)lx軸于點(diǎn)E,交直線(xiàn)y=2x于點(diǎn)F,交直線(xiàn)y=kx+b于點(diǎn)G,若點(diǎn)E的坐標(biāo)是(4,0).

①求CGF的面積;

②直線(xiàn)l上是否存在點(diǎn)P,使OP+BP的值最。咳舸嬖,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;

(3)若(2)中的點(diǎn)Ex軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)E的橫坐標(biāo)為m(m>0),當(dāng)點(diǎn)Ex軸上運(yùn)動(dòng)時(shí),探究下列問(wèn)題:

當(dāng)m取何值時(shí),直線(xiàn)l上存在點(diǎn)Q,使得以A,C,Q為頂點(diǎn)的三角形與AOC全等?請(qǐng)直接寫(xiě)出相應(yīng)的m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D是等邊三角形ABC內(nèi)一點(diǎn),將線(xiàn)段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線(xiàn)段AE,連接CD,BE.

(1)求證:∠AEB=∠ADC;

(2)連接DE,若ADC=105°,求BED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直線(xiàn)AB上任取一點(diǎn)O,過(guò)點(diǎn)O作射線(xiàn)OC、OD,使∠COD=100°,當(dāng)∠AOC=30°時(shí),∠BOD的度數(shù)是(

A. 50° B. 80° C. 80°或150° D. 50°或110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把正整數(shù)1,23,4,…排列成如圖所示的一個(gè)表.

1)用一正方形在表中隨意框住4個(gè)數(shù),把其中最大的數(shù)記為x,另三個(gè)數(shù)用含x的式子表示出來(lái),從大到小依次是      ,   

2)在(1)的前提下,當(dāng)被框住的4個(gè)數(shù)之和等于984時(shí),x位于該表的第幾行第幾列?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,銳角三角形 ABC 和銳角三角形 A'B'C'中,AD、A'D'分別是邊 BC、B'C'上的高,且ABA'B',ADA'D'.要使△ABC≌△A'B'C',則應(yīng)補(bǔ)充條件:________(填寫(xiě)一個(gè)即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案