【題目】縣政府計劃建設一項水利工程,工程需要運送的土石方總量為(單位:),某運輸公司承擔了運送土石方的任務.
(1)運輸公司平均運輸速度v(單位:天)與完成運輸所需時間t(單位:天)之間具有怎樣的函數(shù)關系?
(2)這個運輸公司共有80輛卡車,每天可運輸土石方為(單位:),公司完成全部運輸任務需要多長時間?
(3)當公司以問題(2)中的速度工作了30天后,由于工程進度的需要,剩下的運輸任務必須在20天內(nèi)完成,則運輸公司至少要增加多少輛卡車?
【答案】(1);(2)公司完成全部運輸任務需要60天;(3)運輸公司至少要增加40輛卡車.
【解析】
(1)由總量=vt,求出v即可;
(2)把v的值代入計算即可求出t的值;
(3)設需要增加a輛卡車,每輛卡車每天運輸土石方為m3,求出前30天與后20天的土石方確定出解析式,即可求出a的最小值.
(1)根據(jù)題意得:,
;
(2)當時,
,
答:公司完成全部運輸任務需要60天;
(3)設需要增加a輛卡車,每輛卡車每天運輸土石方為,
前30天運輸土石方為:,
后20天運輸土石方為:.
設30天后的每天平均運輸速度為,所需時間為,
,
由反比例函數(shù)的性質(zhì)可知,隨著的增大而減小,
當時,,
,
,的最小值是40.
答:運輸公司至少要增加40輛卡車.
科目:初中數(shù)學 來源: 題型:
【題目】陜西省某甜瓜基地因“規(guī)模大、品質(zhì)好、品牌亮”吸引了周邊大批水果批發(fā)商訂購,該基地對需要送貨上門且購買量在(含1000kg和3000kg)的客戶制定了兩種銷售方案(客戶只能選擇其中一種方案),已知該基地甜瓜批發(fā)價隨市場變化波動,設某天批發(fā)價為每千克m元.
方案一:每千克元,免運費;
方案二:每千克m元,客戶需支付運費1200元.
(1)請分別寫出這一天按方案一、方案二購買這種甜瓜的應付款y(元)與購買量x(kg)之間的函數(shù)表達式;
(2)當購買量x在什么范圍時,選擇方案二比方案一付款少;
(3)已知5月某天批發(fā)價為每千克8元,某水果批發(fā)商計劃用25000元在這一天購買盡可能多的這種甜瓜并需要送貨上門,那么他在這兩種方案中,應選擇哪一種方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,OA平分交BC于點O,以O為圓心,OC長為半徑作圓交BC于點D.
(1)如圖1,求證:AB為的切線;
(2)如圖2,AB與相切于點E,連接CE交OA于點F.
①試判斷線段OA與CE的關系,并說明理由.
②若,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2﹣(k+1)x+k2+1=0有兩個實數(shù)根.
(1)求k的取值范圍;
(2)若方程的兩實數(shù)根分別為x1,x2,且x12+x22=6x1x2﹣15,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】例 如圖①,李老師設計了一個探究杠桿平衡條件的實驗:在一個自制的類似天平的儀器的左邊固定托盤中放置一個重物,在右邊活動托盤(可左右移動)中放置一定質(zhì)量的砝碼,使得儀器左右平衡.改變活動托盤與點的距離,觀察活動托盤中砝碼的質(zhì)量的變化情況.實驗數(shù)據(jù)記錄如表:
10 | 15 | 20 | 25 | 30 | |
30 | 20 | 15 | 12 | 10 |
(1)把表中的各組對應值作為點的坐標,在圖②的坐標系中描出相應的點,用平滑曲線連接這些點;
(2)觀察所畫的圖象,猜測與之間的函數(shù)關系,求出函數(shù)關系式;
(3)當砝碼的質(zhì)量為時,活動托盤與點的距離是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某食品廠生產(chǎn)一種半成品食材,產(chǎn)量百千克與銷售價格元千克滿足函數(shù)關系式,從市場反饋的信息發(fā)現(xiàn),該半成品食材的市場需求量百千克與銷售價格元千克滿足一次函數(shù)關系,如下表:
銷售價格元千克 | 2 | 4 | 10 | |
市場需求量百千克 | 12 | 10 | 4 |
已知按物價部門規(guī)定銷售價格x不低于2元千克且不高于10元千克
求q與x的函數(shù)關系式;
當產(chǎn)量小于或等于市場需求量時,這種半成品食材能全部售出,求此時x的取值范圍;
當產(chǎn)量大于市場需求量時,只能售出符合市場需求量的半成品食材,剩余的食材由于保質(zhì)期短而只能廢棄若該半成品食材的成本是2元千克.
求廠家獲得的利潤百元與銷售價格x的函數(shù)關系式;
當廠家獲得的利潤百元隨銷售價格x的上漲而增加時,直接寫出x的取值范圍利潤售價成本
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新房裝修后,甲居民購買家居用品的清單如下表,因污水導致部分信息無法識別,根據(jù)下表解決問題:
家居用品名稱 | 單價(元) | 數(shù)量(個) | 金額(元) |
掛鐘 | 30 | 2 | 60 |
垃圾桶 | 15 | ||
塑料鞋架 | 40 | ||
藝術字畫 | 2 | 90 | |
電熱水壺 | 35 | 1 | |
合計 | 8 | 280 |
(1)直接寫出________,________;
(2)甲居民購買了垃圾桶,塑料鞋架各幾個?
(3)若甲居民再次購買藝術字畫和垃圾桶兩種家居用品,共花費150元,若買的垃圾桶的數(shù)量比買字畫的數(shù)量多2個,則甲居民買字畫多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某體育用品商店為了解3月份的銷售情況,對本月各類商品的銷售情況進行調(diào)查,并將調(diào)查的結果繪制成如下的兩幅不完整的統(tǒng)計圖.
(1)請根據(jù)圖中提供的信息,將條形圖補充完整;
(2)該商店準備按3月份球類商品銷售量購進球類商品,含籃球、足球、排球三種,預計恰好用完進貨款共3600元,設購進籃球x個,足球y個,三種球的進價和售價如下表:
類別 | 籃球 | 足球 | 排球 |
進價(單位:元/個) | 50 | 30 | 20 |
預售價(單位:元/個) | 70 | 45 | 25 |
求y與x之間滿足的函數(shù)關系式;
(3)該商店綜合考慮各種因素,預計每種球銷售超過60個后,這種球就會產(chǎn)生滯銷.
①假設所購進籃球、足球、排球能全部售出,求出預估利潤P(元)與x(個)之間滿足的函數(shù)關系式;
②求出預估利潤的最大值,并寫出此時購進三種球各多少個.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com