【題目】甲乙兩人勻速從同一地點到1500米處的圖書館看書,甲出發(fā)5分鐘后,乙以50米/分的速度沿同一路線行走.設甲乙兩人相距(米),甲行走的時間為(分),關于的函數(shù)函數(shù)圖像的一部分如圖所示.

(1)求甲行走的速度;

(2)在坐標系中,補畫關于函數(shù)圖象的其余部分;

(3)問甲、乙兩人何時相距360米?

【答案】130/分;(2)如答圖;(3)當甲行走305分鐘或38分鐘時,甲、乙兩人相距360米.

【解析】試題(1)甲行走的速度:(米/分);

補畫的圖象如圖所示(橫軸上對應的時間為50);

由函數(shù)圖象可知,當,

甲、乙兩人相距360米,即

解得

當甲行走305分鐘或38分鐘時,甲、乙兩人相距360米.

故答案為:(130/分;(2)如答圖;(3)當甲行走305分鐘或38分鐘時,甲、乙兩人相距360米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+cx軸交于A(﹣1,0B3,0)兩點,與y軸交于點C0,﹣3

1)求出該拋物線的函數(shù)關系式及對稱軸

2)點P是拋物線上的一個動點,設點P的橫坐標為t 0t3).當△PCB的面積的最大值時,求點P的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,ABCD,BCCDAB2,CD3,在BC上取點PPB、C不重合)連接PA延長至E,使PA2AE,連接PD并延長至F,使PD3FD,以PEPF為邊作平行四邊形,另一個頂點為G,則PG長度的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,男生樓在女生樓的左側(cè),兩樓高度均為90m,樓間距為AB,冬至日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為CA;春分日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為DA,已知

求樓間距AB;

若男生樓共30層,層高均為3m,請通過計算說明多少層以下會受到擋光的影響?參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,EAB的中點,AD//EC,AED=B.

(1)求證:AED≌△EBC;

(2)當AB=6時,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正六邊形ABCDEF的邊長為2cm,點P為六邊形內(nèi)任一點.則點P到各邊距離之和為_____cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年422日是第50個世界地球日,某校在八年級5個班中,每班各選拔10名學生參加“環(huán)保知識競賽”并評出了一、二、三等獎各若干名,學校將獲獎情況繪成如圖所示的不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:

1)求本次競賽獲獎的總?cè)藬?shù),并補全條形統(tǒng)計圖;

2)求扇形統(tǒng)計圖中“二等獎”所對應扇形的圓心角度數(shù);

3)已知甲、乙、丙、丁4位同學獲得一等獎,學校將采取隨機抽簽的方式在4人中選派2人參加上級團委組織的“愛護環(huán)境、保護地球”知識競賽,請求出抽到的2人恰好是甲和乙的概率(用畫樹狀圖或列表等方法求解).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有下列5個結(jié)論:①abc0;②4a+2b+c0;③b2-4ac0;④ba+c;⑤a+2b+c0,其中正確的結(jié)論有( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD上一點,PQ垂直平分BE,分別交AD、BE、BC于點P、O、Q,連接BP、EQ

1)求證:△BOQ≌△EOP

2)求證:四邊形BPEQ是菱形;

3)若AB6,FAB的中點,OF+OB9,求PQ的長.

查看答案和解析>>

同步練習冊答案