【題目】如圖是一個(gè)由5張紙片拼成的平行四邊形,相鄰紙片之間互不重疊也無縫隙,其中兩張等腰直角三角形紙片的面積都為S1 , 另兩張直角三角形紙片的面積都為S2 , 中間一張正方形紙片的面積為S3 , 則這個(gè)平行四邊形的面積一定可以表示為(
A.4S1
B.4S2
C.4S2+S3
D.3S1+4S3

【答案】A
【解析】解:設(shè)等腰直角三角形的直角邊為a,正方形邊長(zhǎng)為c, 則S2= (a+c)(a﹣c)= a2 c2 ,
∴S2=S1 S3
∴S3=2S1﹣2S2 ,
∴平行四邊形面積=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1
故選A.
設(shè)等腰直角三角形的直角邊為a,正方形邊長(zhǎng)為c,求出S2(用a、c表示),得出S1 , S2 , S3之間的關(guān)系,由此即可解決問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線a,b相交于點(diǎn)O,1=2.

(1)指出∠3的對(duì)頂角;

(2)指出∠5的補(bǔ)角;

(3)若∠1與∠4的度數(shù)之比為14,求∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) 的圖象如圖所示,則結(jié)論: ①兩函數(shù)圖象的交點(diǎn)A的坐標(biāo)為(2,2);
②當(dāng)x>2時(shí),y2>y1
③當(dāng)x=1時(shí),BC=3;
④當(dāng)x逐漸增大時(shí),y1隨著x的增大而增大,y2隨著x的增大而減。
其中正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分類討論,在平面直角坐標(biāo)系中,已知A(2,3),B(0,2),C(3,0).將三角形ABC的一個(gè)頂點(diǎn)平移到坐標(biāo)原點(diǎn)O處,寫出平移方法和另兩個(gè)對(duì)應(yīng)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來水“階梯計(jì)費(fèi)”方式,用戶用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行加價(jià)收費(fèi),為更好地決策,自來水公司隨機(jī)抽取部分用戶的用適量數(shù)據(jù),并繪制了如下不完整統(tǒng)計(jì)圖(每組數(shù)據(jù)包括右端點(diǎn)但不包括左端點(diǎn)),請(qǐng)你根據(jù)統(tǒng)計(jì)圖解決下列問題:

(1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?

(2)補(bǔ)全頻數(shù)分直方圖,求扇形統(tǒng)計(jì)圖中“25噸~30噸”部分的圓心角度數(shù);

(3)如果自來水公司將基本用水量定為每戶25噸,那么該地20萬用戶中約有多少用戶的用水全部享受基本價(jià)格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一塊斜邊長(zhǎng)為12cm,∠B=60°的直角三角板ABC,繞點(diǎn)C沿逆時(shí)針方向旋轉(zhuǎn)90°至△A′B′C′的位置,再沿CB向右平移,使點(diǎn)B′剛好落在斜邊AB上,那么此三角板向右平移的距離是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ADABC的高線,AD=BC,以AB為底邊作等腰RtABE,連接ED,EC,延長(zhǎng)CEADF點(diǎn),下列結(jié)論:①△ADE≌△BCE;CEDE;BD=AF;SBDE=SACE,其中正確的有( 。

A. ①③ B. ①②④ C. ①②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們,足球是世界上第一大運(yùn)動(dòng),你熱愛足球運(yùn)動(dòng)嗎?已知在足球比賽中,勝一場(chǎng)得3分,平一場(chǎng)得1分,負(fù)一場(chǎng)得0分,一隊(duì)共踢了30場(chǎng)比賽,負(fù)了9場(chǎng),共得47分,那么這個(gè)隊(duì)勝了( 。

A. 10場(chǎng) B. 11場(chǎng) C. 12場(chǎng) D. 13場(chǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,E是CD上一點(diǎn),DE:EC=1:3,連AE,BE,BD且AE,BD交于F,則SDEF:SEBF:SABF=

查看答案和解析>>

同步練習(xí)冊(cè)答案