【題目】如圖(1)ABC中,H是高ADBE的交點,且AD=BD.

(1)請你猜想BHAC的關(guān)系,并說明理由;

(2)若將圖(1)中的∠A改成鈍角,請你在圖(2)中畫出該題的圖形,此時(1)中的結(jié)論還成立嗎?(不必證明).

【答案】(1)證明見解析;(2)成立,理由見解析.

【解析】1BH=AC證明△BDH≌△ADC即可

2)成立.證明思路同(1).

1BH=AC;如圖1

ADBE是△ABC的高,∴∠BDH=ADC=90°,DBH+∠C=CAD+∠C=90°,∴∠DBH=DAC.在BDH和△ADC中,∵,∴△BDH≌△ADCASA),BH=AC

2)成立,如圖2

ADBE是△ABC的高∴∠BDH=ADC=90°,DBH+∠H=DBH+∠C=90°,∴∠H=C.在BDH和△ADC,∴△BDH≌△ADCAAS),BH=AC

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰△ABC中,ADBC交直線BC于點D,若AD=BC,則△ABC的頂角的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD內(nèi)部有若干個點,用這些點以及正方形ABCD的頂點A、B、C、D把原正方形分割成一些三角形互相不重疊

1填寫下表:

正方形ABCD內(nèi)點的個數(shù)

1

2

3

4

n

分割成的三角形的個數(shù)

4

6

2原正方形能否被分割成2016個三角形?若能,求此時正方形ABCD內(nèi)部有多少個點?若不能,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對角線AC,BD交于點ODE平分OA于點E,若,則線段OE的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 中,,,,為邊上一個動點,于點,于點的中點,則的最小值是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一矩形紙片OABC放在平面直角坐標系中,O(0,0),A(6,0),C(0,3).動點Q從點O出發(fā)以每秒1個單位長的速度沿OC向終點C運動,運動秒時,動點P從點A出發(fā)以相等的速度沿AO向終點O運動.當其中一點到達終點時,另一點也停止運動.設(shè)點P的運動時間為t(秒).

(1)求點B的坐標,并用含t的代數(shù)式表示OP,OQ;

(2)當t=1時,如圖1,將△OPQ沿PQ翻折,點O恰好落在CB邊上的點D處,求點D的坐標;

(3)在(2)的條件下,矩形對角線AC,BO交于M,取OM中點G,BM中點H,求證:當t=1時四邊形DGPH是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了取得扶貧工作的勝利,某市對扶貧工作人員進行了扶貧知識的培訓(xùn)與測試,隨機抽取了部分人員的測試成績作為樣本,并將成績劃分為四個不同的等級,繪制成不完整統(tǒng)計圖如下圖,請根據(jù)圖中的信息,解答下列問題;

(1)求樣本容量;

(2)補全條形圖,并填空: ;

(3)若全市有5000人參加了本次測試,估計本次測試成績?yōu)?/span>級的人數(shù)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,點ECD上,點FAB上,連接AE、CF、DF、BE,∠DAE=∠BCF.

(1)如圖1,求證:四邊形DFBE是平行四邊形;

(2)如圖2,若ECD的中點,連接GH,在不添加任何輔助線的情況下,請直接寫出圖2中以GH為邊或以GH為對角線的所有平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本(單位:元)、銷售價(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.

1)請解釋圖中點D的橫坐標、縱坐標的實際意義;

2)求線段AB所表示的x之間的函數(shù)表達式;

3)當該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案