【題目】如圖,菱形ABCD的周長為16,若∠BAD=60°,EAB的中點,則點E的坐標(biāo)為(

A. (1,1)B. C. D.

【答案】B

【解析】

首先求出AB的長,進而得出EO的長,再利用含30度角的直角三角形的性質(zhì)以及勾股定理進行求解即可.

EEMAC,則∠EMO=90°,

∵四邊形ABCD是菱形,

AB=CD=BC=AD,ACDB,∠BAO=BAD

∵∠BAD=60°,

∴∠BAO=30°,

ACDB,

∴∠BOA=90°,

EAB的中點,

EO=EA=EB=AB

∵菱形ABCD的周長為16,

AB=4,

EO=2,

EO=AE,

∴∠EOA=EAO=30°,

∵∠EMO=90°,

EM=EO=1

OM=

∴則點E的坐標(biāo)為:(,1),

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E、F分別是平行四邊形ABCD的邊BCAD上的點,且BEDF

1)求證:四邊形AECF為平行四邊形;

2)若AEBE,∠BAC90°,判斷四邊形AECF的形狀并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張正方形紙片,第1次剪成四個大小形狀一樣的小正方形,第2次將其中的一個小正方形再按同樣的方法剪成四個小正方形,然后再將其中的一個小正方形剪成四個小正方形,如此循環(huán)進行下去,如果次,則可剪出 個正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.

(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請你設(shè)計出來;

(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品總利潤為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關(guān)系式,并利用函數(shù)的性質(zhì)說明那種方案獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生對籃球、羽毛球、乒乓球、踢毽子、跳繩等5項體育活動的喜歡程度,某校隨機抽查部分學(xué)生,對他們最喜歡的體育項目(每人只選一項)進行了問卷調(diào)查,并將統(tǒng)計數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖:

請解答下列問題:

1m=  %,這次共抽取了  名學(xué)生進行調(diào)查;請補全條形統(tǒng)計圖;

2)若全校有800名學(xué)生,則該校約有多少名學(xué)生喜愛打籃球?

3)學(xué)校準(zhǔn)備從喜歡跳繩活動的4人(二男二女)中隨機選取2人進行體能測試,求抽到一男一女學(xué)生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多肉植物是指植物營養(yǎng)器官肥大的植物,又稱肉質(zhì)植物或多肉花卉,由于體積小、外形萌、色彩斑斕,茶幾陽臺擺放方便,近年來越來越受到廣大養(yǎng)花愛好者的喜愛.多肉植物則被親切地稱為“肉肉”、“多肉君”.大學(xué)畢業(yè)生陳江河發(fā)現(xiàn)這個商機后,第一次果斷購進甲乙兩種多肉植物共500株.甲種多肉植物每株成本5元,售價10元;乙種多肉植物每株成本8元,售價10元.

(1)由于啟動資金有限,第一次購進多肉植物的金額不得超過3400元,則甲種多肉植物至少購進多少株?

(2)多肉植物一經(jīng)上市,十分搶手,陳江河決定第二次購進甲乙兩種多肉植物,它們的進價不變.甲種多肉植物進貨量在(1)的最少進貨量的基礎(chǔ)上增加了,售價也提高了;乙種多肉植物的售價和進貨量不變,但是由于乙種多肉植物的耐熱性不強,導(dǎo)致銷售完之前它的成活率為.結(jié)果第二次共獲利2700元.求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1)5x1x+1

(2)2x+3(2x1)16(x+1)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一列方程如下排列:

的解是

的解是

的解是

……

根據(jù)觀察所得到的規(guī)律,請你寫出一個解是的方程:_________________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且|a|=|b|.

(1)a+b=   , =   ;

(2)判斷b+c,a﹣c,(b+c)(a﹣b)的符號;

(3)判斷的符號.

查看答案和解析>>

同步練習(xí)冊答案