【題目】一個幾何體是由若干個棱長為3cm的小正方體搭成的,從左面、上面看到的幾何體的形狀圖如圖所示:

1)該幾何體最少由   個小立方體組成,最多由   個小立方體組成.

2)將該幾何體的形狀固定好,

①求該幾何體體積的最大值;

②若要給體積最小時的幾何體表面涂上油漆,求所涂油漆面積的最小值.

【答案】19,14;(2)①答案見解析,②答案見解析.

【解析】

1)由俯視圖可得該幾何體的最底層的立方體的個數(shù);由左視圖第一列至第三列的正方形的個數(shù)可得該幾何體最少和最多的立方體的個數(shù);(2)①由(1)求最多立方體個數(shù)時該幾何體的最大值;②由(1)求最少立方體個數(shù)時幾何體的表面積.

解:(1)觀察圖象可知:最少的情形有2+3+1+1+1+19個小正方體,

最多的情形有2+2+3+3+3+114個小正方體.

故答案為9,14

2)①該幾何體體積的最大值為33×14378cm3

②體積最小時的幾何體表面涂上油漆,共需涂36個面,所涂油漆面積的最小值=36=324cm2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點OAC邊上的一個動點,過點O作直線MNBC,設MN交∠BCA的角平分線于點E,交∠BCA的外角平分線于點F.

(1)求證:EO=FO;

(2)當點O運動到何處時,四邊形AECF是矩形?并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在銳角內(nèi)部,畫1條射線,可得3個銳角;畫2條不同射線,可得6個銳角;畫3條不同射線,可得10個銳角;…….照此規(guī)律,畫6條不同射線,可得銳角________個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上有A,B,C三點,分別代表﹣30,﹣10,10,兩只電子螞蟻甲,乙分別從A,C兩點同時相向而行,甲的速度為4個單位/秒,乙的速度為6個單位/秒.

1)甲,乙經(jīng)過多少秒在數(shù)軸上相遇,并求出相遇點表示的數(shù)?

2)多少秒后,甲到AB,C的距離和為48個單位?

3)在甲到A、BC的距離和為48個單位時,若甲調(diào)頭并保持速度不變,則甲,乙還能在數(shù)軸上相遇嗎?若能,求出相遇點;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC,ACB=90°,AC=BCEAC邊的中點,過點AADABBE的延長線于點D,CG平分∠ACBBD于點G.FAB邊上一點,連接CF,且∠ACF=CBG.

(1)求證:BG=CF;

(2)求證:CF=2DE;

(3)DE=1,求AD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%

1)設小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關系式,并確定自變量x的取值范圍.

2)當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?

3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進價×銷售量)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形是面積為的平行四邊形,其中.

1)如圖①,點邊上任意一點,則的面積的面積之和與的面積之間的數(shù)量關系是__________;

2)如圖②,設交于點,則的面積的面積之和與的面積之間的數(shù)量關系是___________

3)如圖③,點內(nèi)任意一點時,試猜想的面積的面積之和與的面積之間的數(shù)量關系,并加以證明;

4)如圖④,已知點內(nèi)任意一點,的面積為,的面積為,連接,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖,僅用直尺和圓規(guī)畫一個長方形,使它的面積是圖中長方形面積的4.

(2)若新的長方形的長與寬的比為43,且周長為56厘米,求新長方形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A從原點出發(fā)沿數(shù)軸向左運動,同時,點B也從原點出發(fā)沿數(shù)軸向右運動,3秒后,兩點相距15個單位長度.已知點B的速度是點A的速度的4倍(速度單位:單位長度/秒).

1)求出點A、點B運動的速度,并在數(shù)軸上標出AB兩點從原點出發(fā)運動3秒時的位置;

2)若AB兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動,幾秒時,原點恰好處在點A、點B的正中間?

3)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動時,另一點C同時從B點位置出發(fā)向A點運動,當遇到A點后,立即返回向B點運動,遇到B點后又立即返回向A點運動,如此往返,直到B點追上A點時,C點立即停止運動.若點C一直以20單位長度/秒的速度勻速運動,那么點C從開始運動到停止運動,行駛的路程是多少個單位長度?

查看答案和解析>>

同步練習冊答案