【題目】小明在研究拋物線(為常數(shù))時,得到如下結(jié)論,其中正確的是( )
A.無論取何實數(shù),的值都小于0
B.該拋物線的頂點始終在直線上
C.當(dāng)時,隨的增大而增大,則
D.該拋物線上有兩點,,若,,則
【答案】D
【解析】
根據(jù)拋物線的解析式的性質(zhì),對每個選項進行分析即可.
A、由函數(shù)表達式的性質(zhì)可得,拋物線的頂點坐標(biāo)為(h,-h+1),拋物線的最大值為-h+1,若h<1,則y>0,故A項錯誤;
B、由題可得出拋物線的頂點坐標(biāo)為(h,-h+1),
當(dāng)x=h時,代入y=x-1得,故B項錯誤;
C、由題意得,拋物線在x=h左側(cè)時,隨的增大而增大,
∴,故C項錯誤;
D、∵x1<x2,x1+x2>2h,
∴x1在x=h左側(cè)且更靠近x=h,
∵在中,x離x=h越近,y值越大,
∴y1>y2,故D項正確;
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出
(1)如圖①,在等腰Rt△ABC中,斜邊AC=4,點D為AC上一點,連接BD,則BD的最小值為 ;
問題探究
(2)如圖②,在△ABC中,AB=AC=5,BC=6,點M是BC上一點,且BM=4,點P是邊AB上一動點,連接PM,將△BPM沿PM翻折得到△DPM,點D與點B對應(yīng),連接AD,求AD的最小值;
問題解決
(3)如圖③,四邊形ABCD是規(guī)劃中的休閑廣場示意圖,其中∠BAD=∠ADC=135°,∠DCB=30°,AD=2km,AB=3km,點M是BC上一點,MC=4km.現(xiàn)計劃在四邊形ABCD內(nèi)選取一點P,把△DCP建成商業(yè)活動區(qū),其余部分建成景觀綠化區(qū).為方便進入商業(yè)區(qū),需修建小路BP、MP,從實用和美觀的角度,要求滿足∠PMB=∠ABP,且景觀綠化區(qū)面積足夠大,即△DCP區(qū)域面積盡可能。畡t在四邊形ABCD內(nèi)是否存在這樣的點P?若存在,請求出△DCP面積的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[閱讀理解]
構(gòu)造“平行八字型”全等三角形模型是證明線段相等的一種方法,我們常用這種方法證明線段的中點問題.
例如:如圖,D是△ABC邊AB上一點,E是AC的中點,過點C作CF∥AB,交DE的延長線于點F,則易證E是線段DF的中點.
[經(jīng)驗運用]
請運用上述閱讀材料中所積累的經(jīng)驗和方法解決下列問題.
(1)如圖1,在正方形ABCD中,點E在AB上,點F在BC的延長線上,且滿足AE=CF,連接EF交AC于點G.
求證:①G是EF的中點;
②CG=BE;
[拓展延伸]
(2)如圖2,在矩形ABCD中,AB=2BC,點E在AB上,點F在BC的延長線上,且滿足AE=2CF,連接EF交AC于點G.探究BE和CG之間的數(shù)量關(guān)系,并說明理由;
(3)如圖3,若點E在BA的延長線上,點F在線段BC上,DF交AC于點H,BF=2,CF=1,( 2)中的其它條件不變,請直接寫出GH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,樓房BD的前方豎立著旗桿AC.小亮在B處觀察旗桿頂端C的仰角為45°,在D處觀察旗桿頂端C的俯角為30°,樓高BD為20米.
(1)求∠BCD的度數(shù);
(2)求旗桿AC的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為實現(xiàn)區(qū)域教育均衡發(fā)展,我市計劃對某縣、兩類薄弱學(xué)校全部進行改造.根據(jù)預(yù)算,共需資金1575萬元.改造一所類學(xué)校和兩所類學(xué)校共需資金230萬元;改造兩所類學(xué)校和一所類學(xué)校共需資金205萬元.
(1)改造一所類學(xué)校和一所類學(xué)校所需的資金分別是多少萬元?
(2)若該縣的類學(xué)校不超過5所,則類學(xué)校至少有多少所?
(3)我市計劃今年對該縣、兩類學(xué)校共6所進行改造,改造資金由國家財政和地方財政共同承擔(dān).若今年國家財政撥付的改造資金不超過400萬元;地方財政投入的改造資金不少于70萬元,其中地方財政投入到、兩類學(xué)校的改造資金分別為每所10萬元和15萬元.請你通過計算求出有幾種改造方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案:一戶家庭的月均用水量不超過(單位:)的部分按平價收費,超出的部分按議價收費.為此擬召開聽證會,以確定一個合理的月均用水量標(biāo)準.通過抽樣,獲得了前一年1000戶家庭每戶的月均用水量(單位:),將這1000個數(shù)據(jù)按照,,…,分成8組,制成了如圖所示的頻數(shù)分布直方圖.
(1)寫出的值,并估計這1000戶家庭月均用水量的平均數(shù);(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在范圍的組中值作代表)
(2)假定該市政府希望70%的家庭的月均用水量不超過標(biāo)準,請判斷若以(1)中所求得的平均數(shù)作為標(biāo)準是否合理?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兒童用藥的劑量常常按他們的體重來計算,某種藥品,體重的兒童,每次正常服用量為;體重的兒童每次正常服用量為;體重在范圍內(nèi)時,每次正常服用量是兒童體重的一次函數(shù)中,現(xiàn)實中,該藥品每次實際服用量可以比每次正常服用略高一些,但不能超過正常服用量的1.2倍,否則會對兒童的身體造成較大損害.
(1)求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)若該藥品的一種包裝規(guī)格為/袋,求體重在什么范圍的兒童生病時可以一次服下一袋藥?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)計劃對面積為3600m2的區(qū)域進行綠化,經(jīng)投標(biāo),由甲,乙兩個工程隊來完成,已知甲隊4天能完成綠化的面積等于乙隊8天完成綠化的面積,甲隊3天能完成綠化的面積比乙隊5天能完成綠化面積多50m2
(1)求甲、乙兩工程隊每天能完成綠化的面積;
(2)若甲隊每天化費用是1.2萬元,乙隊每天綠化費用為0.5萬元,要使這次綠化的總費用不超過40萬元,則至少應(yīng)安排乙工程隊綠化多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線平分,為射線上一點,以為圓心,10為半徑作,分別與兩邊相交于、和、,連結(jié),此時有.
(1)求證:;
(2)若,求弦的長;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com