【題目】如圖,ABCD的對角線AC、BD相交于點O,點E、F分別是線段AO、BO的中點,若AC+BD=22cm,△OAB的周長是16cm,則EF的長為cm.
【答案】2.5
【解析】解:∵四邊形ABCD是平行四邊形, ∴OA=OC,OB=OD,
∵AC+BD=22cm,
∴OA+OB=11cm,
∵△OAB的周長為16cm,
∴AB=5cm,
∵點E、F分別是線段AO、BO的中點,
∴EF是△OAB的中位線,
∴EF= AB= ,
所以答案是2.5
【考點精析】本題主要考查了三角形中位線定理和平行四邊形的性質的相關知識點,需要掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=4.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是
( 。
A.
B.
C.5
D.6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,對角線AC與BC相交于O , E為AB的中點,F為DE的中點,G為CF的中點, OH⊥DE于H , 過A作AI⊥DE于I , 交BD于J , 交BC于K , 連接BI .
下列結論:①G到AC的距離等于 ;②OH= ;③BK= AK;④∠BIJ=45°.其中正確的結論是
A.①②③
B.①②④
C.①③④
D.①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,Rt△ABC中,∠C=90°,AC=6,BC=8,以B為圓心,半徑為3的⊙O沿BC方向以每秒1個單位的速度平移,當⊙O運動到與直線相交于點C時(點O在BC上),⊙O停止運動.
(1) (2) (3)
(1)當運動停止時,試判斷直線AB與⊙O的位置關系,并證明你的結論;
(2)在平移過程中,若⊙O與AB相切于點D,連接CD , 求△ACD的面積;
(3)在平移過程中,若⊙O經過AB的中點G時, E、F為OC上的兩個動點,且EF=1.6,當四邊形AGEF的周長最小時,試求OE的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的盒子里裝有40個黑、白兩種顏色的球,這些球除顏色外完全相同.小麗做摸球實驗,攪勻后她從盒子里摸出一個球記下顏色后,再把球放回盒子中,不斷重復上述過程,表是實驗中的一組統(tǒng)計數據:
摸球的次數n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數m | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的頻率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
若從盒子里隨機摸出一個球,則摸到白球的概率的估計值為 . (精確到0.1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知定點A(1,0)和B(0,1).
(1)如圖1,若動點C在x軸上運動,則使△ABC為等腰三角形的點C有幾個?
(2)如圖2,過點A,B向過原點的直線l作垂線,垂足分別為M、N,試判斷線段AM、BN、MN之間的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A(a,1)、B(﹣1,b)都在雙曲線y=﹣ 上,點P、Q分別是x軸、y軸上的動點,當四邊形PABQ的周長取最小值時,PQ所在直線的解析式是( )
A.y=x
B.y=x+1
C.y=x+2
D.y=x+3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次函數的圖象經過點A(2,1)和點B(0,2).
(1)求出函數的關系式;
(2)在平面置角坐標系內畫一次函數的圖象,回答下列問題:
①y的值隨著x的值的增大而 ,它的圖象與x軸的交點坐標是 .
②下列點在一次函數圖象上的是 ;
(1,),(﹣2,3),(6,﹣5)
③當x ,時,y>0.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com