【題目】小明為了測量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達坡頂D處.已知斜坡的坡角為15°.(以下計算結果精確到0.1m)

(1)求小明此時與地面的垂直距離CD的值;

(2)小明的身高ED是1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.(sin15°≈0.2588,cos15°≈0.9659 ,tan≈.0.2677 )

【答案】(1)小華與地面的垂直距離CD的值是5.2m; (2)樓房AB的高度是26.1m.

【解析】試題分析:(1)sin15°=,CD= BD·sin15°,將已知數(shù)值代入計算即可;(2)AB=AF+BF,BF=CD+ED不難求得,因為∠AEF=45°,所以AF=EF=BC,要求BC利用cos15°=,即BC=BD·cos15°.

試題解析:

(1)在RtBCD中,∠CBD=15°,BD=20,

CD=BD·sin15°,

CD=5.2(m),

答:小華與地面的垂直距離CD的值是5.2m;

(2)在RtAFE中,

∵∠AEF=45°,

AF=EF=BC,

BC=BD·cos15°≈19.3(m),

AB=AF+DE+CD=19.3+1.6+5.2=26.1(m).

答:樓房AB的高度是26.1m.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃經(jīng)銷A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進價、售價如下表所示.

價格/類型

A

B

進價(元/盞)

40

65

售價(元/盞)

60

100

1)若該商場購進這批臺燈共用去2500元,問這兩種臺燈各購進多少盞?

2)在每種臺燈銷售利潤不變的情況下,若該商場銷售這批臺燈的總利潤不少于1400元,問至少需購進B種臺燈多少盞?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AF分別與BD、CE交于點G、H,其中∠1+∠2=180°.

1)判斷BDCE有怎樣的位置關系,并說明理由;

2)若∠A=F,探索∠C與∠D的數(shù)量關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,EABCD的邊CD的中點,延長AEBC的延長線于點F.

(1)求證:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把RtABC放在直角坐標系內(nèi),其中∠CAB=90°,BC=5,點A,B的坐標分別為(1,0),(4,0),將△ABC沿x軸向右平移,當點C落在直線y=2x-6上時,線段BC掃過的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A(m,4),B(﹣4,n)在反比例函數(shù)y=k0)的圖象上,經(jīng)過點A、B的直線與x軸相交于點C,與y軸相交于點D.

(1)若m=2,求n的值;

(2)求m+n的值;

(3)連接OA、OB,若tan∠AOD+tan∠BOC=1,求直線AB的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面說法正確的是( .

A. 檢測一批進口食品的質(zhì)量應采用全面調(diào)查

B. 萬名考生的成績中抽取名考生的成績作為樣本,樣本容量是

C. 反應你本學年數(shù)學成績的變化情況宜采用扇形統(tǒng)計圖

D. 一組數(shù)據(jù)的樣本容量是,最大值是,最小值是,取組距為,可分為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地區(qū)在一次九年級數(shù)學做了檢測中,有一道滿分8分的解答題,按評分標準,所有考生的得分只有四種:0分,3分,5分,8分.老師為了了解學生的得分情況與題目的難易情況,從全區(qū)4500名考生的試卷中隨機抽取一部分,通過分析與整理,繪制了如下兩幅圖不完整的統(tǒng)計圖.

請根據(jù)以上信息解答下列問題:

1)填空:a=  ,b=  ,并把條形統(tǒng)計圖全;

2)請估計該地區(qū)此題得滿分(即8分)的學生人數(shù);

3)已知難度系數(shù)的計算公式為L=,其中L為難度系數(shù),X為樣本平均得分,W為試題滿分值.一般來說,根據(jù)試題的難度系數(shù)可將試題分為以下三類:當0L≤0.4時,此題為難題;當0.4L≤0.7時,此題為中等難度試題;當0.7L1時,此題為容易題.試問此題對于該地區(qū)的九年級學生來說屬于哪一類?

查看答案和解析>>

同步練習冊答案