如圖,△ABC中,D、E分別是ABAC的中點,若BC=4cm,則DE=    cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


如圖,PA、PB分別與⊙O相切于AB兩點,若∠C=65°,則∠P的度數(shù)為【    】

A. 65°         B. 130°         C. 50°         D. 100°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


問題提出:用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

問題探究:不妨假設能搭成種不同的等腰三角形,為探究之間的關系,我們可以從特殊入手,通過試驗、觀察、類比,最后歸納、猜測得出結(jié)論.

探究一:

(1)用3根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?

     此時,顯然能搭成一種等腰三角形。所以,當時,

(2)用4根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?

     只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形

     所以,當時,

(3)用5根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?

     若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形

     若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形

     所以,當時,

(4)用6根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?

     若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形

     若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形

     所以,當時,

綜上所述,可得表①

   

3

4

5

6

1

0

1

1

探究二:

(1)用7根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?

     (仿照上述探究方法,寫出解答過程,并把結(jié)果填在表②中)

(2) 分別用8根、9根、10根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?

       (只需把結(jié)果填在表②中)

7

8

9

10

你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進行探究,……

解決問題:用根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

          (設分別等于、、,其中是整數(shù),把結(jié)果填在表③中)

 問題應用:用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

          (要求寫出解答過程)

     其中面積最大的等腰三角形每個腰用了__________________根木棒。(只填結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在數(shù)學活動課中,小敏為了測量校園內(nèi)旗桿AB的高度,站在教學樓的C處測得旗桿底端B的俯角為45°,測得旗桿頂端A的仰角為30°,若旗桿與教學樓的距離為9m,則旗桿AB的高度是         m(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


已知拋物線,其中是常數(shù)

(1)求證:不論為何值,該拋物線與軸一定有兩個公共點;

(2)若該拋物線的對稱軸為直線,

①求該拋物線的函數(shù)解析式;

②把該拋物線沿軸向上平移多少個單位長度后,得到的拋物線與軸只有一個公共點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


已知有三條長度分別為1 cm、4 cm、8 cm的線段,請再添一條線段.使這四條線段成比例,求所添線段的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


已知,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


計算:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


計算的結(jié)果是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案