【題目】如圖,△ABC中,∠ACB=90°,DC=AE,AE是BC邊上的中線,過點(diǎn)C作CF⊥AE,垂足為點(diǎn)F,過點(diǎn)B作BD⊥BC交CF的延長(zhǎng)線于點(diǎn)D.
(1)求證:AC=CB; (2)若AC=12 cm,求BD的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,如圖為邊長(zhǎng)為a的大正方形中有一個(gè)邊長(zhǎng)為b的小正方形,如圖是由如圖中陰影部分拼成的一個(gè)長(zhǎng)方形.
(1)設(shè)如圖中陰影部分面積為S1,如圖中陰影部分面積為S2,請(qǐng)用含a、b的代數(shù)式表示: ____ __, ___ ___(只需表示,不必化簡(jiǎn));
(2)以上結(jié)果可以驗(yàn)證哪個(gè)乘法公式?
請(qǐng)寫出這個(gè)乘法公式__ ____;
(3)利用(2)中得到的公式,
計(jì)算:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填寫推理的依據(jù)。
(1)已知:AB∥CD,AD∥BC。求證:∠B=∠D。
證明:∵AB∥CD,AD∥BC( 已知 )
∴∠A+∠B=180,∠A+∠D=180°(_______________________________)
∴∠B=∠D (___________________________)
(2)已知:DF∥AC,∠A=∠F。求證:AE∥BF。
證明:∵DF∥AC (已知)
∴∠FBC=∠_______(_______________________________)
∵∠A=∠F(已知)
∴∠A=∠FBC (____________________)
∴AE∥FB (_____________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,定點(diǎn)E,F分別在直線AB,CD上,平行線AB,CD之間有一動(dòng)點(diǎn)P.
(1)如圖1,當(dāng)P點(diǎn)在EF的左側(cè)時(shí),∠AEP,∠EPF,∠PFC滿足數(shù)量關(guān)系為 ,如圖2,當(dāng)P點(diǎn)在EF的右側(cè)時(shí),∠AEP,∠EPF,∠PFC滿足數(shù)量關(guān)系為 .
(2)如圖3,當(dāng)∠EPF=90°,F(xiàn)P平分∠EFC時(shí),求證:EP平分∠AEF;
(3)如圖4,QE,QF分別平分∠PEB和∠PFD,且點(diǎn)P在EF左側(cè).
①若∠EPF=60°,則∠EQF= .
②猜想∠EPF與∠EQF的數(shù)量關(guān)系,并說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題不正確的是( )
A.0是整式
B.x=0是一元一次方程
C.(x+1)(x﹣1)=x2+x是一元二次方程
D. 是二次根式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,點(diǎn)是射線上一動(dòng)點(diǎn)(與點(diǎn)不重合),分別平分和,分別交射線于點(diǎn)
若點(diǎn)運(yùn)動(dòng)到某處時(shí),恰有,此時(shí)與有何位置關(guān)系?請(qǐng)說明理由.
在點(diǎn)運(yùn)動(dòng)的過程中,與之間的關(guān)系是否發(fā)生變化?若不變,請(qǐng)寫出它們的關(guān)系并說明理由;若變化,請(qǐng)寫出變化規(guī)律.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=5,AB=8,點(diǎn)E為射線DC上一個(gè)動(dòng)點(diǎn),把△ADE沿直線AE折疊,當(dāng)點(diǎn)D的對(duì)應(yīng)點(diǎn)F剛好落在線段AB的垂直平分線上時(shí),則DE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空,將理由補(bǔ)充完整.
如圖,于,于,,求證:.
證明:∵,(已知)
∴(垂直的定義)
∴(________________________)
∴(________________________)
∵(已知)
又∵(________________________)
∴(________________________)
∴(________________________)
∴(________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠3,CD∥EF,試說明∠1=∠4.請(qǐng)將過程填寫完整.
解:∵∠1=∠3,
又∠2=∠3(_______),
∴∠1=____,
∴______∥______(_______),
又∵CD∥EF,
∴AB∥_____,
∴∠1=∠4(兩直線平行,同位角相等).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com