中秋節(jié)期間某水庫(kù)養(yǎng)殖場(chǎng)為適應(yīng)市場(chǎng)需求,連續(xù)用20天時(shí)間,采用每天降低水位以減少捕撈成本的辦法,對(duì)水庫(kù)中某種鮮魚(yú)進(jìn)行捕撈、銷(xiāo)售.
九(1)班數(shù)學(xué)建模興趣小組根據(jù)調(diào)查,整理出第x天()的捕撈與銷(xiāo)售的相關(guān)信息如下:

鮮魚(yú)銷(xiāo)售單價(jià)(元/kg)
20
單位捕撈成本(元/kg)

捕撈量(kg)
950-10x
(1)在此期間該養(yǎng)殖場(chǎng)每天的捕撈量與前一天的捕撈量相比是如何變化的?
(2)假定該養(yǎng)殖場(chǎng)每天捕撈和銷(xiāo)售的鮮魚(yú)沒(méi)有損失,且能在當(dāng)天全部售出,求第x天的收入y(元)與x(元)之間的函數(shù)關(guān)系式;(當(dāng)天收入=日銷(xiāo)售額日捕撈成本)
(3)試說(shuō)明(2)中的函數(shù)y隨x的變化情況,并指出在第幾天y取得最大值,最大值是多少?

(1)該養(yǎng)殖場(chǎng)每天的捕撈量與前一天減少10kg;(2);(3)當(dāng)1≤x≤10時(shí),y隨x的增大而增大,當(dāng)10≤x≤20時(shí),y隨x的增大而減小,當(dāng)x=10時(shí)即在第10天,y取得最大值,最大值為14450.

解析試題分析:(1)由圖表中的數(shù)據(jù)可知該養(yǎng)殖場(chǎng)每天的捕撈量與前一天減少10kg;(2)根據(jù)收入=捕撈量×單價(jià)﹣捕撈成本,列出函數(shù)表達(dá)式;(3)將實(shí)際轉(zhuǎn)化為求函數(shù)最值問(wèn)題,從而求得最大值.
試題解析:(1)該養(yǎng)殖場(chǎng)每天的捕撈量與前一天減少10kg.
(2)由題意,得y=.
(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,
又∵1≤x≤20且x為整數(shù),
∴當(dāng)1≤x≤10時(shí),y隨x的增大而增大;
當(dāng)10≤x≤20時(shí),y隨x的增大而減。
當(dāng)x=10時(shí)即在第10天,y取得最大值,最大值為14450.
考點(diǎn):二次函數(shù)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某商場(chǎng)試銷(xiāo)一種成本為每件60元的服裝,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y件與銷(xiāo)售單價(jià)x元符合一次函數(shù)y=kx+b,且x=65時(shí),y="55" 當(dāng)x=75時(shí),y=45.
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫(xiě)出利潤(rùn)W元與銷(xiāo)售單價(jià)x之間的關(guān)系式;銷(xiāo)售單間定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?
(3)若該商場(chǎng)獲得利潤(rùn)不低于500元,試確定銷(xiāo)售單價(jià)x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,已知拋物線(xiàn)y=-x2+bx+c經(jīng)過(guò)點(diǎn)A(1,0),B(-3,0)兩點(diǎn),且與y軸交于點(diǎn)C.

(1) 求b,c的值。
(2)在第二象限的拋物線(xiàn)上,是否存在一點(diǎn)P,使得△PBC的面積最大?求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值.若不存在,請(qǐng)說(shuō)明理由.
(3) 如圖2,點(diǎn)E為線(xiàn)段BC上一個(gè)動(dòng)點(diǎn)(不與B,C重合),經(jīng)過(guò)B、E、O三點(diǎn)的圓與過(guò)點(diǎn)B且垂直于BC的直線(xiàn)交于點(diǎn)F,當(dāng)△OEF面積取得最小值時(shí),求點(diǎn)E坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知點(diǎn)A (2,4) 和點(diǎn)B (1,0)都在拋物線(xiàn)上.

(1)求m、n;
(2)向右平移上述拋物線(xiàn),記平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,若四邊形A A′B′B為菱形,求平移后拋物線(xiàn)的表達(dá)式;
(3)記平移后拋物線(xiàn)的對(duì)稱(chēng)軸與直線(xiàn)AB′ 的交點(diǎn)為C,試在x軸上找一個(gè)點(diǎn)D,使得以點(diǎn)B′、C、D為頂點(diǎn)的三角形與△ABC相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線(xiàn)的圖象,將其向右平移兩個(gè)單位后得到圖象

(1)求圖象所表示的拋物線(xiàn)的解析式:
(2)設(shè)拋物線(xiàn)軸相交于點(diǎn)、點(diǎn)(點(diǎn)位于點(diǎn)的右側(cè)),頂點(diǎn)為點(diǎn),點(diǎn)位于軸負(fù)半軸上,且到軸的距離等于點(diǎn)軸的距離的2倍,求所在直線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果點(diǎn)P由B出發(fā)沿BA方向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q由A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為2cm/s.連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(單位:s)(0≤t≤4).解答下列問(wèn)題:

(1)當(dāng)t為何值時(shí),PQ∥BC.
(2)設(shè)△AQP面積為S(單位:cm2),求S與t的函數(shù)關(guān)系式
(3)是否存在某時(shí)刻t,使四邊形BPQC的面積為△ABC面積的三分之二?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.
(4)如圖2,把△AQP沿AP翻折,得到四邊形AQPQ′.那么是否存在某時(shí)刻t,使四邊形AQPQ′為菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

“惠民”經(jīng)銷(xiāo)店為某工廠(chǎng)代銷(xiāo)一種工業(yè)原料(代銷(xiāo)是指廠(chǎng)家先免費(fèi)提供貨源,待貨物售出后再進(jìn)行結(jié)算,未售出的由廠(chǎng)家負(fù)責(zé)處理).當(dāng)每噸售價(jià)為260元時(shí),月銷(xiāo)售量為45噸;該經(jīng)銷(xiāo)店為提高經(jīng)營(yíng)利潤(rùn),準(zhǔn)備采取降價(jià)的方式進(jìn)行促銷(xiāo),經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):當(dāng)每噸售價(jià)每下降10元時(shí),月銷(xiāo)售量就會(huì)增加7.5噸.綜合考慮各種因素,每售出一噸工業(yè)原料共需支付廠(chǎng)家及其它費(fèi)用100元.
(1)當(dāng)每噸售價(jià)是240元時(shí),計(jì)算此時(shí)的月銷(xiāo)售量;
(2)若在“薄利多銷(xiāo)、讓利于民”的原則下,當(dāng)每噸原料售價(jià)為多少時(shí),該店的月利潤(rùn)為9000元;
(3)每噸原料售價(jià)為多少時(shí),該店的月利潤(rùn)最大,求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線(xiàn) a≠0)的對(duì)稱(chēng)軸是直線(xiàn)l,頂點(diǎn)為點(diǎn)M.若自變量x和函數(shù)值y1的部分對(duì)應(yīng)值如下表所示:

x

―1
0
3



0

0

(1)求y1與x之間的函數(shù)關(guān)系式;
(2)若經(jīng)過(guò)點(diǎn)T(0,t)作垂直于y軸的直線(xiàn)l′,A為直線(xiàn)l′上的動(dòng)點(diǎn),線(xiàn)段AM的垂直平分線(xiàn)交直線(xiàn)l于點(diǎn)B,點(diǎn)B關(guān)于直線(xiàn)AM的對(duì)稱(chēng)點(diǎn)為P,記P(x,y2).
①求y2與x之間的函數(shù)關(guān)系式;
②當(dāng)x取任意實(shí)數(shù)時(shí),若對(duì)于同一個(gè)x,有y1<y2恒成立,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,已知直線(xiàn)y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線(xiàn)y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn),與x軸交于另一個(gè)點(diǎn)C,對(duì)稱(chēng)軸與直線(xiàn)AB交于點(diǎn)E,拋物線(xiàn)頂點(diǎn)為D.

(1)求拋物線(xiàn)的解析式;
(2)在第三象限內(nèi),F(xiàn)為拋物線(xiàn)上一點(diǎn),以A、E、F為頂點(diǎn)的三角形面積為3,求點(diǎn)F的坐標(biāo);
(3)點(diǎn)P從點(diǎn)D出發(fā),沿對(duì)稱(chēng)軸向下以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),以P、B、C為頂點(diǎn)的三角形是直角三角形?直接寫(xiě)出所有符合條件的t值.

查看答案和解析>>

同步練習(xí)冊(cè)答案