某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經試銷發(fā)現,銷售量y件與銷售單價x元符合一次函數y=kx+b,且x=65時,y="55" 當x=75時,y=45.
(1)求一次函數y=kx+b的表達式;
(2)若該商場獲得利潤為W元,試寫出利潤W元與銷售單價x之間的關系式;銷售單間定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
(3)若該商場獲得利潤不低于500元,試確定銷售單價x的范圍.
(1)y=-x+120;(2)W=-(x-90)²+900,87,891;(3)70≤x≤87.
解析試題分析:(1)把x=65,y=55、 x=75,y=45代入一次函數y=kx+b,利用待定系數法即可求出一次函數的表達式;(2)根據題意,總利潤=每一件服裝的利潤×銷售量,每件服裝的利潤=每件服裝的售價-每件服裝的成本=x-60,據此代入計算,然后根據二次函數的性質計算最大值即可;(3)根據題意把W=500代入(2)中的函數關系式,然后利用二次函數的圖象及其性質即可解答.
試題解析:
(1)當x=65時,y=55時代入y=kx+b中,得:55=65k+b,
當x=75時,y=45時代入y=kx+b中,得:55=65k+b,
解之得:k=-1,b=120,
∴y=-x+120.
(2)W=(x-60)(-x+120)=-(x-90)²+900,
∴W=-(x-90)²+900,
∵a=-1<0,
∴當x=90時,W最大值為900.
又∵獲利不得高于45%,
∴x≤60+60×45%,即x≤87.
∴把x=87代入W=-(x-90)²+900中,
∴W=-(87-90)²+900=891,
∴當銷售定價定為87元時,商場獲得的利潤最大,最大利潤為891元.
(3)把W=500代入W=-(x-90)²+900中,
-(x-90)²+900=500,
解之得:x1=70,x2=110.
∴當70≤x≤110時,W≥500,
又∵x≤87,
∴當70≤x≤87時,商場獲得的利潤不少于500元.
考點:1待定系數法求一次函數的表達式,2二次函數的應用.
科目:初中數學 來源: 題型:解答題
如圖所示,在平面直角坐標系中,Rt△OBC的兩條直角邊分別落在x軸、y軸上,且OB=1,OC=3,將△OBC繞原點O順時針旋轉90°得到△OAE,將△OBC沿y軸翻折得到△ODC,AE與CD交于點F.
(1)若拋物線過點A、B、C, 求此拋物線的解析式;
(2)求△OAE與△ODC重疊的部分四邊形ODFE的面積;
(3)點M是第三象限內拋物線上的一動點,點M在何處時△AMC的面積最大?最大面積是多少?求出此時點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,已知:為邊長是的等邊三角形,四邊形為邊長是6的正方形. 現將等邊和正方形按如圖①的方式擺放,使點與點重合,點、、在同一條直線上,從圖①的位置出發(fā),以每秒1個單位長度的速度沿方向向右勻速運動,當點與點重合時暫停運動,設的運動時間為秒().
(1)在整個運動過程中,設等邊和正方形重疊部分的面積為,請直接寫出與之間的函數關系式;
(2)如圖②,當點與點重合時,作的角平分線交于點,將繞點逆時針旋轉,使邊與邊重合,得到. 在線段上是否存在點,使得為等腰三角形. 如果存在,求線段的長度;若不存在,請說明理由.
(3)如圖③,若四邊形為邊長是的正方形,的移動速度為每秒 個單位長度,其余條件保持不變. 開始移動的同時,點從點開始,沿折線以每秒個單位長度開始移動,停止運動時,點也停止運動. 設在運動過程中,交折線于點,則當時,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
銳角△ABC中,BC=6,,兩動點M,N分別在邊AB,AC上滑動,且MN∥BC,以MN為邊向下作正方形MPQN,設其邊長為x,正方形MPQN與△ABC公共部分的面積為y(y>0).
(1)求△ABC中邊BC上高AD;
(2)當x為何值時,PQ恰好落在邊BC上(如圖1);
(3)當PQ在△ABC外部時(如圖2),求y關于x的函數關系式(注明x的取值范圍),并求出x為何值時y最大,最大值是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,拋物線與x軸交于點A(-1,0)、B(3,0),與y軸交于點C(0,3).
(1)求拋物線的解析式及頂點D的坐標;
(2)若點P是拋物線第一象限上的一個動點,過點P作PQ∥AC交x軸于點Q.當點P的坐標為 時,四邊形PQAC是平行四邊形;當點P的坐標為 時,四邊形PQAC是等腰梯形. (利用備用圖畫圖,直接寫出結果,不寫求解過程).
(3)若P為線段BD上的一個動點,過點P作PM⊥x軸于點M,求四邊形PMAC的面積的最大值和此時點P的坐標
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在直角坐標系xOy中,二次函數y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,已知拋物線與x軸交于點B、C,與y軸交于點E,且點B在點C的左側.
(1)若拋物線過點M(-2,-2),求實數a的值;
(2)在(1)的條件下,解答下列問題:
①求出△BCE的面積;
②在拋物線的對稱軸上找一點P,使CP+EP的值最小,求出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,拋物線與x軸交于A、B兩點(A在B的左側),與y軸交于點C(0,4),頂點為(1,).
(1)求拋物線的函數表達式;
(2)如圖1,設拋物線的對稱軸與x軸交于點D,試在對稱軸上找出點P,使△CDP為等腰三角形,請直接寫出滿足條件的所有點P的坐標.
(3)如圖2,若點E是線段AB上的一個動點(與A、B不重合),分別連接AC、BC,過點E作EF∥AC交線段BC于點F,連接CE,記△CEF的面積為S,S是否存在最大值?若存在,求出S的最大值及此時E點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
中秋節(jié)期間某水庫養(yǎng)殖場為適應市場需求,連續(xù)用20天時間,采用每天降低水位以減少捕撈成本的辦法,對水庫中某種鮮魚進行捕撈、銷售.
九(1)班數學建模興趣小組根據調查,整理出第x天()的捕撈與銷售的相關信息如下:
鮮魚銷售單價(元/kg) | 20 |
單位捕撈成本(元/kg) | |
捕撈量(kg) | 950-10x |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com