【題目】已知,如圖,BDO的直徑,點A、CO上并位于BD的兩側(cè),∠ABC45°,連結(jié)CD、OA并延長交于點F,過點CO的切線交BD延長線于點E

1)求證:∠F=∠ECF

2)當(dāng)DF6,tanEBC,求AF的值.

【答案】(1)詳見解析;(2).

【解析】

1)連結(jié)OC,根據(jù)切線的性質(zhì)得到OCCE,根據(jù)圓周角定理得到∠AOC90°,計算即可證明;

2DCx,根據(jù)正切的定義用x表示出BC、BDOC,根據(jù)正切的定義列式計算即可.

1)證明:連結(jié)OC

CE切圓OC,

OCCE

∴∠OCF+FCE90°,

∵∠ABC45°

∴∠AOC2ABC90°,

∴∠F+OCF90°,

∴∠F=∠ECF;

2)設(shè)DCx,

OBOC,

∴∠OBC=∠OCB

BD為圓O的直徑

∴∠BCO+OCD90°,

∵∠ECD+OCD90°

∴∠OBC=∠ECD,

∵∠F=∠ECD

∴∠F=∠EBC,

RtBCD中,tanEBC,

BC2DC2x,BDx

OCOAx,

RtFOC中,tanFtanEBC

FCOC,即6+xx

解得,x4,

OF2OC4

AFOFAO2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展陽光體育活動,決定開設(shè)乒乓球、籃球、跑步、跳繩這四種運動項目,學(xué)生只能選擇其中一種,為了解學(xué)生喜歡哪一種項目,隨機抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成兩張不完整的統(tǒng)計圖,請你結(jié)合圖中的信息解答下列問題:

(1)樣本中喜歡籃球項目的人數(shù)百分比是 ;其所在扇形統(tǒng)計圖中的圓心角的度數(shù)是 ;

(2)把條形統(tǒng)計圖補畫完整并注明人數(shù);

(3)已知該校有1000名學(xué)生,根據(jù)樣本估計全校喜歡乒乓球的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,我們把橫、縱坐標(biāo)都是整數(shù)的點叫做整點.已知點A(0,4),點B是x軸正半軸上的整點,記△AOB內(nèi)部(不包括邊界)的整點個數(shù)為m.當(dāng)點B的橫坐標(biāo)為4時,m的值是_____.當(dāng)點B的橫坐標(biāo)為4n(n為正整數(shù))時,m=_____(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為大力弘揚“奉獻(xiàn)、友愛、互助、進(jìn)步”的志愿服務(wù)精神,傳播“奉獻(xiàn)他人、提升自我”的志愿服務(wù)理念,合肥市某中學(xué)利用周末時間開展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個志愿服務(wù)活動(每人只參加一個活動),九年級某班全班同學(xué)都參加了志愿服務(wù),班長為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)請把折線統(tǒng)計圖補充完整;

(2)求扇形統(tǒng)計圖中,網(wǎng)絡(luò)文明部分對應(yīng)的圓心角的度數(shù);

(3)小明和小麗參加了志愿服務(wù)活動,請用樹狀圖或列表法求出他們參加同一服務(wù)活動的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4BC5,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點G,則CG_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國魏晉時期的數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù)”,奠定了中國圓周率計算在世界上的領(lǐng)先地位.劉徽提出:“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體,而無所失矣”,由此求得圓周率的近似值.如圖,設(shè)半徑為的圓內(nèi)接正邊形的周長為,圓的直徑為,當(dāng)時,,則當(dāng)時,______.(結(jié)果精確到0.01,參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年某水果加工公司分兩次采購了一批桃子,第一次費用為25萬元,第二次費用為30萬元.已知第一次采購時每噸桃子的價格比去年的平均價格上漲了0.1萬元,第二次采購時每噸桃子的價格比去年的平均價格下降了0.1萬元,第二次采購的數(shù)量是第一次采購數(shù)量的2倍.

1)試問去年每噸桃子的平均價格是多少萬元?兩次采購的總數(shù)量是多少噸?

2)該公司可將桃子加工成桃脯或桃汁,每天只能加工其中一種.若單獨加工成桃脯,每天可加工3噸桃子,每噸可獲利0.7萬元;若單獨加工成桃汁,每天可加工9噸桃子,每噸可獲利0.2萬元.為出口需要,所有采購的桃子必須在30天內(nèi)加工完畢.

①根據(jù)該公司的生產(chǎn)能力,加工桃脯的時間不能超過多少天?

②在這次加工生產(chǎn)過程中,應(yīng)將多少噸桃子加工成桃脯才能獲取最大利潤?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系中的點,將它的縱坐標(biāo)與橫坐標(biāo)的比稱為點理想值,記作.如理想值

1)①若點在直線上,則點理想值等于_______;

②如圖,,的半徑為1.若點上,則點理想值的取值范圍是_______

2)點在直線上,的半徑為1,點上運動時都有,求點的橫坐標(biāo)的取值范圍;

3是以為半徑的上任意一點,當(dāng)時,畫出滿足條件的最大圓,并直接寫出相應(yīng)的半徑的值.(要求畫圖位置準(zhǔn)確,但不必尺規(guī)作圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,AOB是等腰直角三角形,∠AOB=90°,點A2,1.

1)求點B的坐標(biāo);

2)求經(jīng)過A、OB三點的拋物線的函數(shù)表達(dá)式;

3)在(2)所求的拋物線上,是否存在一點P,使四邊形ABOP的面積最大?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案