【題目】如圖,在矩形ABCD中,AB=3,BC=4,將矩形ABCD繞點C按順時針方向旋轉α角,得到矩形A'B'C'D',B'C與AD交于點E,AD的延長線與A'D'交于點F.
(1)如圖①,當α=60°時,連接DD',求DD'和A'F的長;
(2)如圖②,當矩形A'B'CD'的頂點A'落在CD的延長線上時,求EF的長;
(3)如圖③,當AE=EF時,連接AC,CF,求ACCF的值.
【答案】
(1)
解:①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉α角,得到矩形A'B'C'D',
∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=3∠A′D′C=∠ADC=90°,
∵α=60°,
∴∠DCD′=60°,
∴△CDD′是等邊三角形,
∴DD′=CD=3.
②如圖①中,連接CF.
∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,
∴△CDF≌△CD′F,
∴∠DCF=∠D′CF= ∠DCD′=30°,
在Rt△CD′F中,∵tan∠D′CF= ,
∴D′F= ,
∴A′F=A′D′﹣D′F=4﹣ .
(2)
解:如圖②中,
在Rt△A′CD′中,∵∠D′=90°,
∴A′C2=A′D′2+CD′2,
∴A′C=5,A′D=2,
∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,
∴△A′DF∽△A′D′C,
∴ = ,
∴ = ,
∴DF= ,
同理可得△CDE∽△CB′A′,
∴ = ,
∴ = ,
∴ED= ,
∴EF=ED+DF= .
(3)
解:如圖③中,作FG⊥CB′于G.
∵四邊形A′B′CD′是矩形,
∴GF=CD′=CD=3,
∵S△CEF= EFDC= CEFG,
∴CE=EF,∵AE=EF,
∴AE=EF=CE,
∴∠ACF=90°,
∵∠ADC=∠ACF,∠CAD=∠FAC,
∴△CAD∽△FAC,
∴ = ,
∴AC2=ADAF,
∴AF= ,
∵S△ACF= ACCF= AFCD,
∴ACCF=AFCD= .
【解析】(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉α角,得到矩形A'B'C'D',只要證明△CDD′是等邊三角形即可解決問題;②如圖①中,連接CF,在Rt△CD′F中,求出FD′即可解決問題;(2)由△A′DF∽△A′D′C,可得 = ,推出DF= ,同理可得△CDE∽△CB′A′,由 = ,求出DE,即可解決問題;(3)如圖③中,作FG⊥CB′于G,由S△ACF= ACCF= AFCD,把問題轉化為求AFCD,只要證明∠ACF=90°,證明△CAD∽△FAC,即可解決問題;
【考點精析】利用相似三角形的應用和旋轉的性質對題目進行判斷即可得到答案,需要熟知測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構造相似三角形求解;①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了.
科目:初中數學 來源: 題型:
【題目】如圖A在數軸上所對應的數為﹣2.
(1)點B在點A右邊距A點4個單位長度,求點B所對應的數;
(2)在(1)的條件下,點A以每秒2個單位長度沿數軸向左運動,點 B 以每秒2個單位長度沿數軸向右運動,當點A運動到﹣6所在的點處時,求A,B兩點間距離.
(3)在(2)的條件下,現A點靜止不動,B點再以每秒2個單位長度沿數軸向左運動時,經過多長時間A,B兩點相距4個單位長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】列方程解應用題.
程大位,明代商人,珠算發(fā)明家,被稱為珠算之父、卷尺之父.少年時,讀書極為廣博,對數學頗感興趣,60歲時完成其杰作《直指算法統(tǒng)宗》(簡稱《算法統(tǒng)宗》).
在《算法統(tǒng)宗》里記載了一道趣題:一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚各幾丁?意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完.試問大、小和尚各多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《九章算術》是我國東漢初年編訂的一部數學經典著作在它的“方程”一章里,一次方程組是由算籌布置而成的九章算術中的算籌圖是豎排的,為看圖方便,我們把它改為橫排,如圖1、圖圖中各行從左到右列出的算籌數分別表示未知數x,y的系數與相應的常數項把圖1所示的算籌圖用我們現在所熟悉的方程組形式表述出來,就是類似地,圖2所示的算籌圖我們可以表述為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,甲、乙兩船同時由港口A出發(fā)開往海島B,甲船沿東北方向向海島B航行,其速度為15海里/小時;乙船速度為20海里/小時,先沿正東方向航行1小時后,到達C港口接旅客,停留半小時后再轉向北偏東30°方向開往B島,其速度仍為20海里/小時.
(1)求港口A到海島B的距離;
(2)B島建有一座燈塔,在離燈塔方圓5海里內都可以看見燈塔,問甲、乙兩船哪一艘先看到燈塔?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】陳老師和學生做一個猜數游戲,他讓學生按照如下步驟進行計算:
①任想一個兩位數a,把a乘以2,再加上9,把所得的和再乘以2;
②把a乘以2,再加上30,把所得的和除以2;
③把①所得的結果減去②所得的結果,這個差即為最后的結果.
陳老師說:只要你告訴我最后的結果,我就能猜出你最初想的兩位數a.
學生周曉曉計算的結果是96,陳老師立即猜出周曉曉最初想的兩位數是31.
請完成
(1)由①可列代數式 ,由②可列代數式 ,由③可知最后結果為 ;(用含a的式子表示)
(2)學生小明計算的結果是120,你能猜出他最初想的兩位數是多少嗎?
(3)請用自己的語言解釋陳老師猜數的方法.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學改革學生的學習模式,變“老師要學生學習”為“學生自主學習”,培養(yǎng)了學生自主學習的能力.小華與小明同學就“你最喜歡哪種學習方式”隨機調查了他們周圍的一些同學,根據收集到的數據繪制了以下兩個不完整的統(tǒng)計圖(如圖).
請根據上面兩個不完整的統(tǒng)計圖回答以下4個問題:
(1)這次抽樣調查中,共調查了_____名學生.
(2)補全條形統(tǒng)計圖中的缺項.
(3)在扇形統(tǒng)計圖中,選擇教師傳授的占_____%,選擇小組合作學習的占_____%.
(4)根據調查結果,估算該校1800名學生中大約有_____人選擇小組合作學習模式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人兩次同時在一家糧店購買大米,兩次大米的價格分別為每千克a元和b元(a≠b).甲每次買100千克大米,乙每次買100元大米.
(1)用含a、b的代數式表示:甲兩次購買大米共需付款 元,乙兩次共購買 千克大米.若甲兩次購買大米的平均單價為每千克Q1元,乙兩次購買大米的平均單價為每千克Q2元.則:Q1= ;Q2= .
(2)若規(guī)定誰兩次購糧的平均價格低,誰購糧的方式就更合理,請你判斷比較甲、乙兩人的購糧方式,哪一個更合理,并說明你的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】新農村實行大面積機械化種植,為了更好地收割莊稼,農田承包大戶張大叔決定購買8臺收割機,現有久保田和春雨兩種品牌的收割機,其中每臺收割機的價格、每天的收割面積如下表銷售商又宣傳說,購買一臺久保田收割機比購買一臺春雨收割機多8萬元,購買2臺久保田收割機比購買3臺春雨收割機多4萬元.
久保田收割機 | 春雨收割機 | |
價格萬元臺 | x | y |
收割面積畝天 | 24 | 18 |
求兩種收割機的價格;
如果張大叔購買收割機的資金不超過125萬元,那么有哪幾種購買方案?
在的條件下,若每天要求收割面積不低于150畝,為了節(jié)約資金,那么有沒有一種最佳購買方案呢?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com