如圖1,菱形ABCD中,∠A=60°,點(diǎn)P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運(yùn)動(dòng)到D終止,點(diǎn)Q從A與P同時(shí)出發(fā),沿邊AD勻速運(yùn)動(dòng)到D終止,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).△APQ的面積S(cm2)與t(s)之間函數(shù)關(guān)系的圖象由圖2中的曲線段OE與線段EF、FG給出.
(1)求點(diǎn)Q運(yùn)動(dòng)的速度;
(2)求圖2中線段FG的函數(shù)關(guān)系式;
(3)問:是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請(qǐng)說明理由.

解:(1)由題意,可知題圖2中點(diǎn)E表示點(diǎn)P運(yùn)動(dòng)至點(diǎn)B時(shí)的情形,所用時(shí)間為3s,則菱形的邊長(zhǎng)AB=2×3=6cm.
此時(shí)如答圖1所示:

AQ邊上的高h(yuǎn)=AB•sin60°=6×=cm,
S=S△APQ=AQ•h=AQ×=,解得AQ=3cm,
∴點(diǎn)Q的運(yùn)動(dòng)速度為:3÷3=1cm/s.

(2)由題意,可知題圖2中FG段表示點(diǎn)P在線段CD上運(yùn)動(dòng)時(shí)的情形.如答圖2所示:

點(diǎn)Q運(yùn)動(dòng)至點(diǎn)D所需時(shí)間為:6÷1=6s,點(diǎn)P運(yùn)動(dòng)至點(diǎn)C所需時(shí)間為12÷2=6s,至終點(diǎn)D所需時(shí)間為18÷2=9s.
因此在FG段內(nèi),點(diǎn)Q運(yùn)動(dòng)至點(diǎn)D停止運(yùn)動(dòng),點(diǎn)P在線段CD上繼續(xù)運(yùn)動(dòng),且時(shí)間t的取值范圍為:6≤t≤9.
過點(diǎn)P作PE⊥AD交AD的延長(zhǎng)線于點(diǎn)E,則PE=PD•sin60°=(18-2t)×=t+
S=S△APQ=AD•PE=×6×(t+)=t+,
∴FG段的函數(shù)表達(dá)式為:S=t+(6≤t≤9).

(3)菱形ABCD的面積為:6×6×sin60°=
當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)時(shí),PQ將菱形ABCD分成△APQ和五邊形PBCDQ兩部分,如答圖3所示.
此時(shí)△APQ的面積S=AQ•AP•sin60°=t•2t×=t2,
根據(jù)題意,得t2=×,
解得t=s;

當(dāng)點(diǎn)P在BC上運(yùn)動(dòng)時(shí),PQ將菱形分為梯形ABPQ和梯形PCDQ兩部分,如答圖4所示.
此時(shí),有S梯形ABPQ=S菱形ABCD,即(2t-6+t)×6×=×
解得t=s.
∴存在t=和t=,使PQ將菱形ABCD的面積恰好分成1:5的兩部分.
分析:(1)根據(jù)函數(shù)圖象中E點(diǎn)所代表的實(shí)際意義求解.E點(diǎn)表示點(diǎn)P運(yùn)動(dòng)到與點(diǎn)B重合時(shí)的情形,運(yùn)動(dòng)時(shí)間為3s,可得AB=6cm;再由S△APQ=,可求得AQ的長(zhǎng)度,進(jìn)而得到點(diǎn)Q的運(yùn)動(dòng)速度;
(2)函數(shù)圖象中線段FG,表示點(diǎn)Q運(yùn)動(dòng)至終點(diǎn)D之后停止運(yùn)動(dòng),而點(diǎn)P在線段CD上繼續(xù)運(yùn)動(dòng)的情形.如答圖2所示,求出S的表達(dá)式,并確定t的取值范圍;
(3)當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)時(shí),PQ將菱形ABCD分成△APQ和五邊形PBCDQ兩部分,如答圖3所示,求出t的值;
當(dāng)點(diǎn)P在BC上運(yùn)動(dòng)時(shí),PQ將菱形分為梯形ABPQ和梯形PCDQ兩部分,如答圖4所示,求出t的值.
點(diǎn)評(píng):本題是運(yùn)動(dòng)型綜合題,考查了動(dòng)點(diǎn)問題的函數(shù)圖象、菱形的性質(zhì)、解直角三角形、圖形面積等知識(shí)點(diǎn).解題關(guān)鍵是深刻理解動(dòng)點(diǎn)的函數(shù)圖象,了解圖象中關(guān)鍵點(diǎn)所代表的實(shí)際意義,理解動(dòng)點(diǎn)的完整運(yùn)動(dòng)過程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在菱形ABCD中,∠BAD=60°,點(diǎn)M是菱形對(duì)角線DB延長(zhǎng)線上的一點(diǎn),把△AMB繞點(diǎn)A精英家教網(wǎng)按逆時(shí)針方向旋轉(zhuǎn)n度后恰好與△ACD重合.
(1)請(qǐng)直接寫出n的值;
(2)若AD=1,試求點(diǎn)M在上述旋轉(zhuǎn)過程中所經(jīng)過的路線的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在菱形ABCD中,過點(diǎn)A作AE⊥BC,垂足E為BC的中點(diǎn),連接DE,F(xiàn)為DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=4,求DE和AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在菱形ABCD中,E為BC邊上一點(diǎn),∠AED=∠B.
(1)求證:△ABE∽△DEA;
(2)若AB=4,求AE•DE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•上海)己知:如圖,在菱形ABCD中,點(diǎn)E、F分別在邊BC、CD,∠BAF=∠DAE,AE與BD交于點(diǎn)G.
(1)求證:BE=DF;
(2)當(dāng)
DF
FC
=
AD
DF
時(shí),求證:四邊形BEFG是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,菱形ABCD中,點(diǎn)E、F分別為AB、AD的中點(diǎn),連接CE、CF.
(1)求證:CE=CF;
(2)如圖2,若H為AB上一點(diǎn),連接CH,使∠CHB=2∠ECB,求證:CH=AH+AB.

查看答案和解析>>

同步練習(xí)冊(cè)答案