如圖1,菱形ABCD中,∠A=60°,點P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運動到D終止,點Q從A與P同時出發(fā),沿邊AD勻速運動到D終止,設點P運動的時間為t(s).△APQ的面積S(cm2)與t(s)之間函數(shù)關系的圖象由圖2中的曲線段OE與線段EF、FG給出.
(1)求點Q運動的速度;
(2)求圖2中線段FG的函數(shù)關系式;
(3)問:是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請說明理由.

解:(1)由題意,可知題圖2中點E表示點P運動至點B時的情形,所用時間為3s,則菱形的邊長AB=2×3=6cm.
此時如答圖1所示:

AQ邊上的高h=AB•sin60°=6×=cm,
S=S△APQ=AQ•h=AQ×=,解得AQ=3cm,
∴點Q的運動速度為:3÷3=1cm/s.

(2)由題意,可知題圖2中FG段表示點P在線段CD上運動時的情形.如答圖2所示:

點Q運動至點D所需時間為:6÷1=6s,點P運動至點C所需時間為12÷2=6s,至終點D所需時間為18÷2=9s.
因此在FG段內(nèi),點Q運動至點D停止運動,點P在線段CD上繼續(xù)運動,且時間t的取值范圍為:6≤t≤9.
過點P作PE⊥AD交AD的延長線于點E,則PE=PD•sin60°=(18-2t)×=t+
S=S△APQ=AD•PE=×6×(t+)=t+,
∴FG段的函數(shù)表達式為:S=t+(6≤t≤9).

(3)菱形ABCD的面積為:6×6×sin60°=
當點P在AB上運動時,PQ將菱形ABCD分成△APQ和五邊形PBCDQ兩部分,如答圖3所示.
此時△APQ的面積S=AQ•AP•sin60°=t•2t×=t2
根據(jù)題意,得t2=×,
解得t=s;

當點P在BC上運動時,PQ將菱形分為梯形ABPQ和梯形PCDQ兩部分,如答圖4所示.
此時,有S梯形ABPQ=S菱形ABCD,即(2t-6+t)×6×=×
解得t=s.
∴存在t=和t=,使PQ將菱形ABCD的面積恰好分成1:5的兩部分.
分析:(1)根據(jù)函數(shù)圖象中E點所代表的實際意義求解.E點表示點P運動到與點B重合時的情形,運動時間為3s,可得AB=6cm;再由S△APQ=,可求得AQ的長度,進而得到點Q的運動速度;
(2)函數(shù)圖象中線段FG,表示點Q運動至終點D之后停止運動,而點P在線段CD上繼續(xù)運動的情形.如答圖2所示,求出S的表達式,并確定t的取值范圍;
(3)當點P在AB上運動時,PQ將菱形ABCD分成△APQ和五邊形PBCDQ兩部分,如答圖3所示,求出t的值;
當點P在BC上運動時,PQ將菱形分為梯形ABPQ和梯形PCDQ兩部分,如答圖4所示,求出t的值.
點評:本題是運動型綜合題,考查了動點問題的函數(shù)圖象、菱形的性質(zhì)、解直角三角形、圖形面積等知識點.解題關鍵是深刻理解動點的函數(shù)圖象,了解圖象中關鍵點所代表的實際意義,理解動點的完整運動過程.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在菱形ABCD中,∠BAD=60°,點M是菱形對角線DB延長線上的一點,把△AMB繞點A精英家教網(wǎng)按逆時針方向旋轉(zhuǎn)n度后恰好與△ACD重合.
(1)請直接寫出n的值;
(2)若AD=1,試求點M在上述旋轉(zhuǎn)過程中所經(jīng)過的路線的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在菱形ABCD中,過點A作AE⊥BC,垂足E為BC的中點,連接DE,F(xiàn)為DE上一點,且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=4,求DE和AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在菱形ABCD中,E為BC邊上一點,∠AED=∠B.
(1)求證:△ABE∽△DEA;
(2)若AB=4,求AE•DE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•上海)己知:如圖,在菱形ABCD中,點E、F分別在邊BC、CD,∠BAF=∠DAE,AE與BD交于點G.
(1)求證:BE=DF;
(2)當
DF
FC
=
AD
DF
時,求證:四邊形BEFG是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,菱形ABCD中,點E、F分別為AB、AD的中點,連接CE、CF.
(1)求證:CE=CF;
(2)如圖2,若H為AB上一點,連接CH,使∠CHB=2∠ECB,求證:CH=AH+AB.

查看答案和解析>>

同步練習冊答案