【題目】在平面直角坐標(biāo)系中,點(diǎn)A(﹣m2﹣1,1)位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點(diǎn)O,過點(diǎn)D作DE∥AC且DE= AC,連接AE交OD于點(diǎn)F,連接CE、OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD為菱形,點(diǎn)P為對角線BD上的一個動點(diǎn).
(1)如圖1,連接AP并延長交BC的延長線于點(diǎn)E,連接 PC,求證:∠AEB=∠PCD.
(2)如圖1,當(dāng)PA=PD且PC⊥BE時,求∠ABC的度數(shù).
(3)連接AP并延長交射線BC于點(diǎn)E,連接 PC,若∠ABC=90°且ΔPCE是等腰三角形,求得∠PEC的度數(shù) (第(3)問 直接寫出結(jié)果,不寫過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于點(diǎn)D,經(jīng)過B、D兩點(diǎn)的⊙O交AB 于點(diǎn)E,交BC于點(diǎn)F,EB為⊙O的直徑.
(1)求證:AC是⊙O的切線;
(2)當(dāng)BC=2,cos∠ABC=時,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P為直線l外一點(diǎn),點(diǎn)A、B、C為直線l上三點(diǎn),PA=4cm、PB=5cm、PC=2cm,則點(diǎn)P到直線l的距離( )
A.等于4cm
B.等于2cm
C.小于2cm
D.不大于2cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知線段AB的兩個端點(diǎn)分別是A(4,﹣1),B(1,1)將線段AB平移后得到線段A′B′,若點(diǎn)A的坐標(biāo)為(﹣2,2),則點(diǎn)B′的坐標(biāo)為( )
A.(﹣5,4)
B.(4,3)
C.(﹣1,﹣2)
D.(﹣2,﹣1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com