【題目】已知:如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于點D,經(jīng)過B、D兩點的⊙O交AB 于點E,交BC于點F,EB為⊙O的直徑.

(1)求證:AC是⊙O的切線;

(2)當(dāng)BC=2,cos∠ABC=時,求⊙O的半徑.

【答案】(1)見解析;(2)⊙O的半徑為

【解析】(1)連結(jié)OD,可證得OD∥BC,得到∠ADO=∠C=90°,從而得出結(jié)論;

(2)由cos∠ABC=,得到AB=6,由OD∥BC,得出△AOD∽△ABC,即可求出圓的半徑.

(1)證明:如圖,連結(jié)OD.

∴OD=OB.∴∠1=∠2.

∵BD平分∠ABC,∴∠1=∠3.

∴∠2=∠3.∴OD∥BC.

∴∠ADO=∠C=90°.∴OD⊥AC.

∵OD是⊙O的半徑,

∴AC是⊙O的切線.

(2)解:在Rt△ACB中,∠C=90,BC=2,cos∠ABC=,

設(shè)⊙O的半徑為r,則AO=6﹣r.

∵OD∥BC,

∴△AOD∽△ABC.

,∴

解得

∴⊙O的半徑為

“點睛”此題主要考查了切線的判定定理與相似三角形的判定和性質(zhì)定理,此定理是初中階段非常重要的定理,同學(xué)們應(yīng)正確把握此定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10cm,BD⊥AC于點D,BD=8cm.點M從點A出發(fā),沿AC的方向勻速運動,同時直線PQ由點B出發(fā),沿BA的方向勻速運動,運動過程中始終保持PQ∥AC,直線PQ交AB于點P、交BC于點Q、交BD于點F.連接PM,設(shè)運動時間為t秒(0<t≤5).線段CM的長度記作y,線段BP的長度記作y,y和y關(guān)于時間t的函數(shù)變化情況如圖所示.

(1)由圖2可知,點M的運動速度是每秒   cm,當(dāng)t為何值時,四邊形PQCM是平行四邊形?在圖2中反映這一情況的點是   ;

(2)設(shè)四邊形PQCM的面積為ycm2,求y與t之間的函數(shù)關(guān)系式;

(3)是否存在某一時刻t,使S四邊形PQCM=S△ABC?若存在,求出t的值;若不存在,說明理由;

(4)連接PC,是否存在某一時刻t,使點M在線段PC的垂直平分線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算中,結(jié)果正確的是(
A.a3a4=a12
B.a10÷a2=a5
C.a2+a3=a5
D.4a﹣a=3a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】H7N9型禽流感是一種新型禽流感,于2013年3月底在上海和安徽兩地率先發(fā)現(xiàn).H7N9型禽流感是全球首次發(fā)現(xiàn)的新亞型流感病毒,其細(xì)胞的直徑約為0.000000106m,用科學(xué)記數(shù)法表示這個數(shù)是( )
A.0.106×106m
B.0.106×106m
C.1.06×107m
D.1.06×107m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線a平行于x軸,且過點(﹣2,3)和(5,y),則y=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某運動隊欲從甲、乙兩名優(yōu)秀選手中選一名參加全省射擊比賽,該運動隊預(yù)先對這兩名選手進行了8次測試,測得的成績?nèi)绫恚?/span>

次數(shù)

選手甲的成績(環(huán))

選手乙的成績(環(huán))

1

9.6

9.5

2

9.7

9.9

3

10.5

10.3

4

10.0

9.7

5

9.7

10.5

6

9.9

10.3

7

10.0

10.0

8

10.6

9.8

根據(jù)統(tǒng)計的測試成績,請你運用所學(xué)過的統(tǒng)計知識作出判斷,派哪一位選手參加比賽更好?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A(﹣m2﹣1,1)位于(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=60°,∠A=40°.

(1)用尺規(guī)作圖:作AB的垂直平分線,交AC于點D,交AB于點E(保留作圖痕跡,不要求寫作法和證明);
(2)求證:BD平分∠CBA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,20173月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.

(1)求該快遞公司投遞快遞總件數(shù)的月平均增長率?

(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成20176月份的快遞投遞任務(wù)?如果不能,請問至少需要增加幾名業(yè)務(wù)員?

查看答案和解析>>

同步練習(xí)冊答案