【題目】如圖,BP平分∠ABC,D為BP上一點(diǎn),E,F分別在BA,BC上,且滿足DE=DF,若∠BED=140°,則∠BFD的度數(shù)是( 。
A. 40°B. 50°C. 60°D. 70°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)某種產(chǎn)品,每件產(chǎn)品成本是3元,售價(jià)是4元,年銷售量為10萬件,為了獲得更好的效益,公司準(zhǔn)備拿出一定的資金做廣告.根據(jù)經(jīng)驗(yàn),每年投入的廣告費(fèi)是x(萬元)時(shí),產(chǎn)品的年銷售量將是原銷售量的y倍,且,如果把利潤(rùn)看作是銷售總額減去成本費(fèi)和廣告費(fèi),進(jìn)貨都能銷售完,試寫出年利潤(rùn)S(萬元)與廣告費(fèi)x(萬元)的函數(shù)關(guān)系式,并計(jì)算廣告費(fèi)是多少萬元時(shí),公司獲得的年利潤(rùn)最大,最大年利潤(rùn)是是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測(cè)出了A,B間的距離:先在AB外選一點(diǎn)C,然后測(cè)出AC,BC的中點(diǎn)M,N,并測(cè)量出MN的長(zhǎng)為12 m,由此他就知道了A,B間的距離,有關(guān)他這次探究活動(dòng)的描述錯(cuò)誤的是( )
A. AB=24 m B. MN∥AB C. △CMN∽△CAB D. CM∶MA=1∶2
【答案】D
【解析】試題分析:根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得MN∥AB,MN=AB,再根據(jù)相似三角形的判定解答.
試題解析:∵M(jìn)、N分別是AC,BC的中點(diǎn)
∴MN∥AB,MN=AB,
∴AB=2MN=2×12=24m
△CMN∽△CAB
∵M(jìn)是AC的中點(diǎn)
∴CM=MA
∴CM:MA=1:1
故描述錯(cuò)誤的是D選項(xiàng).
故選D.
考點(diǎn):1.三角形中位線定理;2.相似三角形的應(yīng)用.
【題型】單選題
【結(jié)束】
10
【題目】若關(guān)于的一元二次方程+x-3m=0有兩個(gè)不相等的實(shí)數(shù)根,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N(下面是推理過程,請(qǐng)你填空).
解:∵∠BAE+∠AED=180°(已知)
∴ ∥ (同旁內(nèi)角互補(bǔ),兩直線平行)
∴∠BAE= (兩直線平行,內(nèi)錯(cuò)角相等)
又∵∠1=∠2
∴∠BAE﹣∠1= ﹣
即∠MAE=
∴ ∥ (內(nèi)錯(cuò)角相等,兩直線平行)
∴∠M=∠N(兩直線平行,內(nèi)錯(cuò)角相等)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師請(qǐng)同學(xué)思考如下問題:如圖1,我們把一個(gè)四邊形ABCD的四邊中點(diǎn)E,F(xiàn),G,H依次連接起來得到的四邊形EFGH是平行四邊形嗎?
小敏在思考問題時(shí),有如下思路:連接AC.
結(jié)合小敏的思路作答:
(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說明理由,參考小敏思考問題的方法解決一下問題;
(2)如圖2,在(1)的條件下,若連接AC,BD.
①當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是菱形,寫出結(jié)論并證明;
②當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是矩形,直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,,,,點(diǎn)D在射線BC上,,則點(diǎn)D到斜邊AB的距離等于_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市自開展“學(xué)習(xí)新思想,做好接班人”主題閱讀活動(dòng)以來,受到各校的廣泛關(guān)注和同學(xué)們的積極響應(yīng),某校為了解全校學(xué)生主題閱讀的情況,隨機(jī)抽查了部分學(xué)生在某一周主題閱讀文章的篇數(shù),并制成下列統(tǒng)計(jì)圖表.
某校抽查的學(xué)生文章閱讀的篇數(shù)統(tǒng)計(jì)表
文章閱讀的篇數(shù)(篇) | 3 | 4 | 5 | 6 | 7及以上 |
人數(shù)(人) | 20 | 28 | m | 16 | 12 |
請(qǐng)根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:
(1)求被抽查的學(xué)生人數(shù)和的值;
(2)求本次抽查的學(xué)生文章閱讀篇數(shù)的中位數(shù)和眾數(shù);
(3)若該校共有800名學(xué)生,根據(jù)抽查結(jié)果估計(jì)該校學(xué)生在這一周內(nèi)文章閱讀的篇數(shù)為4篇的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列條件中不能判定AB∥CD的是( 。
A. ∠3=∠4 B. ∠1=∠5 C. ∠4+∠5=180° D. ∠3+∠5=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖 1,O 是等邊三角形 ABC 內(nèi)一點(diǎn),連接 OA,OB,OC,且 OA=3,OB=4,OC=5,將△BAO 繞點(diǎn) B 順時(shí)針旋轉(zhuǎn)后得到△BCD,連接 OD.
填空:①旋轉(zhuǎn)角為 °;②線段 OD 的長(zhǎng)是 ;③∠BDC= °;
(2)如圖 2,O 是△ABC 內(nèi)一點(diǎn),且∠ABC=90°,BA=BC. 連接 OA,OB,OC,將△BAO 繞點(diǎn) B 順時(shí)針旋轉(zhuǎn)后得到△BCD,連接 OD.當(dāng) OA,OB,OC 滿足什么條件時(shí),∠BDC=135°?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com