【題目】如圖,在ABC中,,,點D在射線BC上,,則點D到斜邊AB的距離等于_____________

【答案】24

【解析】

分兩種情況:點D在點C右側(cè),根據(jù)已知角度求出,利用三角函數(shù)依次求出ACAD即可得到答案;點DBC之間時,利用已知角度求出∠BAD=CAD=30,再根據(jù)角平分線的性質(zhì)得出點D到斜邊AB的距離.

當點D在點C右側(cè)時,

,BAC=60,,

AC=,B=30,

,

∴∠CAD=30,AD=4,CD=2,

∵∠BAC=60

,

∴點D到斜邊AB的距離等于4;

當點DBC之間時,過點DDEAB,

∵∠BAC=60,∠CAD=30,∠B=30,

∴∠BAD=CAD=30,

DE=CD=2,

故答案為:24.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y1kx+by2=﹣4x+a的圖象如圖所示,且A04),C(﹣2,0).

1)由圖可知,不等式kx+b0的解集是   ;

2)若不等式kx+b>﹣4x+a的解集是x1

①求點B的坐標;

②求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點Px,y)的坐標滿足方程組

1)求點P的坐標(用含mn的式子表示);

2)若點P在第四象限,且符合要求的整數(shù)m只有兩個,求n的取值范圍;

3)若點Px軸的距離為5,到y軸的距離為4,求m,n的值(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某住宅小區(qū)在施工過程中留下了一塊空地(圖中的四邊形ABCD),經(jīng)測量,在四邊形ABCD中,AB3m,BC4m,CD12m,DA13m,∠B90°.

1)△ACD是直角三角形嗎?為什么?

2)小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米80元,試問鋪滿這塊空地共需花費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BP平分∠ABC,DBP上一點,E,F分別在BA,BC上,且滿足DEDF,若∠BED140°,則∠BFD的度數(shù)是( 。

A. 40°B. 50°C. 60°D. 70°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等邊三角形,ACE是等腰三角形,∠AEC120°AECE,FBC中點,連接AE

1)直接寫出∠BAE的度數(shù)為   

2)判斷AFCE的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平面直角坐標系中,A0,﹣1)、B(﹣20C4,0

1)求△ABC的面積;

2)在y軸上是否存在一個點D,使得△ABD為等腰三角形,若存在,求出點D坐標;若不存,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BAD是由BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且ABBC,BE=CE,連接DE.

(1)求證:BDE≌△BCE;

(2)試判斷四邊形ABED的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,AB的垂直平分線MNAC于點D,交AB于點E

1)若∠A40°,求∠DBC的度數(shù);

2)若AE6,△CBD的周長為20,求BC的長.

查看答案和解析>>

同步練習冊答案