【題目】如圖,在△ABC中,AB=BC,BE⊥AC于點E,AD⊥BC于點D,∠BAD=45°,AD與BE交于點F,連接CF.
(1)求證△ACD≌△BFD
(2)求證:BF=2AE;
(3)若CD=,求AD的長.
【答案】(1)見解析;(2)見解析;(3)AD =2+
【解析】
(1)先判定出△ABD是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AD=BD,再根據(jù)同角的余角相等求出∠CAD=∠CBE,然后利用“角邊角”證明△ADC和△BDF全等;
(2)根據(jù)全等三角形對應邊相等可得BF=AC,再根據(jù)等腰三角形三線合一的性質(zhì)可得AC=2AE,從而得證;
(3)根據(jù)全等三角形對應邊相等可得DF=CD,然后利用勾股定理列式求出CF,再根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AF=CF,然后根據(jù)AD=AF+DF代入數(shù)據(jù)即可得解.
(1)∵AD⊥BC,∠BAD=45°,
∴△ABD是等腰直角三角形,∴AD=BD,
∵BE⊥AC,AD⊥BC,
∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,
∴∠CAD=∠CBE,
在△ADC和△BDF中,
∠CAD=∠CBE,AD=BD,∠ADC=∠BDF=90°,
∴△ACD≌△BFD(ASA)
(2)由(1)可知:BF=AC
∵AB=BC,BE⊥AC,
∴AC=2AE,
∴BF=2AE;
(3) ∵△ACD≌△BFD,
∴DF=CD=,
在Rt△CDF中,CF=,
∵BE⊥AC,AE=EC,
∴AF=CF=2.
∴AD=AF+DF=2+
科目:初中數(shù)學 來源: 題型:
【題目】2019年11月1日是重慶城市花博會在重慶江北嘴中央商務區(qū)舉行,商務區(qū)附近的某花店抓住商機,從11月1日開始銷售A、B兩種花束,A花束每束利潤率是40%,B種花束每束利潤率是20%,當日,A種花束的銷量是B種花束銷量的,這兩種花束的總利潤率是30%;11月2日在A、B兩種花束利潤率保持不變的情況下,若要想當日的總利潤率達到35%,則A花束的銷量與B花束的銷量之比是____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx+4(k≠0)與x軸、y軸分別交于點B,A,直線y=-2x+1與y軸交于點C,與直線y=kx+4交于點D,△ACD的面積是 .
(1)求直線AB的表達式;
(2)設點E在直線AB上,當△ACE是直角三角形時,請直接寫出點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D為AB邊上一點,E為CD中點,AC=,∠ABC=30°,∠A=∠BED=45°,則BD的長為( 。
A. B. +1﹣ C. ﹣ D. ﹣1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,將△ABC繞點C逆時針旋轉(zhuǎn),旋轉(zhuǎn)后的圖形是△A′B′C,點A的對應點A′落在中線AD上,且點A′是△ABC的重心,A′B′與BC相交于點E,那么BE:CE= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,E、F在菱形的邊BC,CD上.
(1)證明:BE=CF.
(2)當點E,F(xiàn)分別在邊BC,CD上移動時(△AEF保持為正三角形),請?zhí)骄克倪呅蜛ECF的面積是否發(fā)生變化?若不變,求出這個定值;如果變化,求出其最大值.
(3)在(2)的情況下,請?zhí)骄俊鰿EF的面積是否發(fā)生變化?若不變,求出這個定值;如果變化,求出其最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明將一根長為20厘米的鐵絲剪成兩段,然后分別圍成兩個正方形。設其中一段鐵絲長為x厘米。
(1)設較長的一段鐵絲長為xcm,請計算出這兩個正方形的面積之差;
(2)是否存在合適的x的值,使兩個正方形的面積剛好相差5cm2?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線AD對應的函數(shù)關(guān)系式為y=﹣2x﹣2,與拋物線交于點A(在x軸上),點D.拋物線與x軸另一交點為B(3,0),拋物線與y軸交點C(0,﹣6).
(1)求拋物線的解析式;
(2)如圖2,連結(jié)CD,過點D作x軸的垂線,垂足為點E,直線AD與y軸交點為F,若點P由點D出發(fā)以每秒1個單位的速度沿DE邊向點E移動,1秒后點Q也由點D出發(fā)以每秒3個單位的速度沿DC,CO,OE邊向點E移動,當其中一個點到達終點時另一個點也停止移動,點P的移動時間為t秒,當PQ⊥DF時,求t的值;(圖3為備用圖)
(3)如果點M是直線BC上的動點,是否存在一個點M,使△ABM中有一個角為45°?如果存在,直接寫出所有滿足條件的M點坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市射擊隊甲、乙兩名隊員在相同的條件下各射耙10次,每次射耙的成績情況如圖所示:
(1)請將下表補充完整:(參考公式:方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2])
平均數(shù) | 方差 | 中位數(shù) | |
甲 | 7 |
| 7 |
乙 |
| 5.4 |
|
(2)請從下列三個不同的角度對這次測試結(jié)果進行
①從平均數(shù)和方差相結(jié)合看, 的成績好些;
②從平均數(shù)和中位數(shù)相結(jié)合看, 的成績好些;
③若其他隊選手最好成績在9環(huán)左右,現(xiàn)要選一人參賽,你認為選誰參加,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com