【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上)
(1)若△CEF與△ABC相似.
①當(dāng)AC=BC=2時(shí),AD的長(zhǎng)為 ;
②當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為 ;
(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似嗎?請(qǐng)說明理由.
【答案】解:(1)①。
②或。
(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似。理由如下:
如答圖3所示,連接CD,與EF交于點(diǎn)Q,
∵CD是Rt△ABC的中線,∴CD=DB=AB,∴∠DCB=∠B。
由折疊性質(zhì)可知,∠CQF=∠DQF=90°,
∴∠DCB+∠CFE=90°。
∵∠B+∠A=90°,∴∠CFE=∠A。
又∵∠C=∠C,∴△CEF∽△CBA。
【解析】
(1)若△CEF與△ABC相似.
①當(dāng)AC=BC=2時(shí),△ABC為等腰直角三角形,如答圖1所示,
此時(shí)D為AB邊中點(diǎn),AD=AC=。
②當(dāng)AC=3,BC=4時(shí),有兩種情況:
(I)若CE:CF=3:4,如答圖2所示,
∵CE:CF=AC:BC,∴EF∥BC。
由折疊性質(zhì)可知,CD⊥EF,
∴CD⊥AB,即此時(shí)CD為AB邊上的高。
在Rt△ABC中,AC=3,BC=4,∴BC=5。
∴cosA=。∴AD=ACcosA=3×=。
(II)若CF:CE=3:4,如答圖3所示.
∵△CEF∽△CAB,∴∠CEF=∠B。
由折疊性質(zhì)可知,∠CEF+∠ECD=90°。
又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD。
同理可得:∠B=∠FCD,CD=BD。∴AD=BD。
∴此時(shí)AD=AB=×5=.
綜上所述,當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為或。
(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似.可以推出∠CFE=∠A,∠C=∠C,從而可以證明兩個(gè)三角形相似。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“上升數(shù)”是一個(gè)數(shù)中右邊數(shù)字比左邊數(shù)字大的自然數(shù)(如:34,568,2469等).任取一個(gè)兩位數(shù),是“上升數(shù)”的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司購進(jìn)某種水果的成本為元/千克,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),這種水果在未來天的銷售價(jià)格(元/千克)與時(shí)間(天)之間的函數(shù)關(guān)系式為
,且其日銷售量(千克)與時(shí)間(天)的關(guān)系如下表:
時(shí)間天 | … | ||||||
日銷售量千克 | … |
已知與之間的變化規(guī)律符合一次函數(shù)關(guān)系,試求在第天的日銷售量是多少?
問哪一天的銷售利潤最大?最大日銷售利潤為多少?
在實(shí)際銷售的前天中,公司決定每銷售千克水果就捐贈(zèng)元利潤給“精準(zhǔn)扶貧”對(duì)象.現(xiàn)發(fā)現(xiàn):在前天中,每天扣除捐贈(zèng)后的日銷售利潤隨時(shí)間的增大而增大,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖a,P、Q是△ABC的邊BC上的兩點(diǎn),且△APQ為等邊三角形,AB=AC,
(1)求證:BP=CQ.
(2)如圖a,若∠BAC=120,AP=3,求BC的長(zhǎng).
(3)若∠BAC=120,沿直線BC向右平行移動(dòng)△APQ得到△A′P′Q′(如圖b),A′Q′與AC交于點(diǎn)M.當(dāng)點(diǎn)P移動(dòng)到何處時(shí),△AA′M≌△CQ′M?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點(diǎn)D在邊AB上.
(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;
(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想ED和EB數(shù)量關(guān)系,并加以證明;
(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EH⊥AB于點(diǎn)H,過點(diǎn)E作GE∥AB,交線段AC的延長(zhǎng)線于點(diǎn)G,AG=5CG,BH=3.求CG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店計(jì)劃購進(jìn)A、B兩種型號(hào)的電動(dòng)自行車共30輛,其中A型電動(dòng)自行車不少于20輛,A、B兩種型號(hào)電動(dòng)自行車的進(jìn)貨單價(jià)分別為2500元、3000元,售價(jià)分別為2800元、3500元,設(shè)該商店計(jì)劃購進(jìn)A型電動(dòng)自行車m輛,兩種型號(hào)的電動(dòng)自行車全部銷售后可獲利潤y元.
(1)求出y與m之間的函數(shù)關(guān)系式;
(2)該商店如何進(jìn)貨才能獲得最大利潤?此時(shí)最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=mx+b的圖象與反比例函數(shù)y=的圖象交于A(3,1),B(﹣,n)兩點(diǎn).
(1)求該反比例函數(shù)的解析式;
(2)求n的值及該一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把△ABC沿EF對(duì)折,疊合后的圖形如圖所示.若∠A=60°,∠1=85°,則∠2的度數(shù)( )
A. 24°B. 25°C. 30°D. 35°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com