如圖,在Rt△ABC中,∠C=90°,∠A=45°,AB=2.將△ABC繞頂點A順時針方向旋轉(zhuǎn)至△AB′C′的位置,B,A,C′三點共線,則線段BC掃過的區(qū)域面積為      


。

【考點】扇形面積的計算,旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),轉(zhuǎn)換思想的應(yīng)用。

【分析】先根據(jù)Rt△ABC中,∠C=90°,∠A=30°,AB=2求出BC及AC的長,再根據(jù)線段BC掃過的區(qū)域面積為:

=


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


已知二次函數(shù)圖象的頂點橫坐標(biāo)是4,與x軸交于A(x1,0)、B(x2,0),x1﹤0﹤x2,與y軸交于點C,O為坐標(biāo)原點,

(1)求證: ;

(2)求a、b的值;

(3)若二次函數(shù)圖象與直線僅有一個交點時,求二次函數(shù)的最值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


平面內(nèi)有四個點A、B、C、D,其中∠ABC=1500,∠ADC=300,AB=BC=1,則滿足題意的BD長的最大值是         。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


定義:如果一個y與x的函數(shù)圖象經(jīng)過平移后能與某反比例函數(shù)的圖象重合,那么稱這個函數(shù)是y與x的“反比例平移函數(shù)”.例如:的圖象向左平移2個單位,再向下平移1個單位得到的圖象,則是y與x的“反比例平移函數(shù)”.

(1)若矩形的兩邊分別是2cm、3cm,當(dāng)這兩邊分別增加x(cm)、y(cm)后,得到的新矩形的面積為8cm2,求y與x的函數(shù)表達式,并判斷這個函數(shù)是否為“反比例平移函數(shù)”.

(2)如圖,在平面直角坐標(biāo)系中,點O為原點,矩形OABC的頂點A、C的坐標(biāo)分別為(9,0)、(0,3).點D是OA的中點,連接OB、CD交于點E,“反比例平移函數(shù)”的圖象經(jīng)過B、E兩點.則這個“反比例平移函數(shù)”的表達式為            ;這個“反比例平移函數(shù)”的圖象經(jīng)過適當(dāng)?shù)淖儞Q與某一個反比例函數(shù)的圖象重合,請寫出這個反比例函數(shù)的表達式.

(3)在(2)的條件下,已知過線段BE中點的一條直線l交這個“反比例平移函數(shù)”圖象于P、Q兩點(P在Q的右側(cè)),若B、E、P、Q為頂點組成的四邊形面積為16,請求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖所示,半徑為1的圓和邊長為1的正方形在同一水平線上,圓沿該水平線從左向右勻速穿過正方形,設(shè)穿過時間為t,正方形除去圓部分的面積為S(陰影部分),則S與t的大致圖象為【    】

A.       B.      C.8      D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在正方形ABCD中,AB=4cm,動點M從A出發(fā),以1cm/s的速度沿折線AB﹣BC運動,同時動點N從A出發(fā),以2cm/s的速度沿折線AD﹣DC﹣CB運動,M,N第一次相遇時同時停止運動.設(shè)△AMN的面積為y,運動時間為x,則下列圖象中能大致反映y與x的函數(shù)關(guān)系的是(  )

A.    B.    C.    D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在△ABC中,∠A=90°,AB=2cm,AC=4cm.動點P從點A出發(fā),沿AB方向以1cm/s的速度向點B運動,動點Q從點B同時出發(fā),沿BA方向以1cm/s的速度向點A運動.當(dāng)點P到達點B時,P,Q兩點同時停止運動,以AP為一邊向上作正方形APDE,過點Q作QF∥BC,交AC于點F.設(shè)點P的運動時間為ts,正方形和梯形重合部分的面積為Scm2

(1)當(dāng)t= _________ s時,點P與點Q重合;

(2)當(dāng)t= _________ s時,點D在QF上;

(3)當(dāng)點P在Q,B兩點之間(不包括Q,B兩點)時,求S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知動點A在函數(shù)(x>o)的圖象上,AB⊥x軸于點B,AC⊥y軸于點C,延長CA至點D,使AD=AB,延長BA至點E,使AE=AC。直線DE分別交x軸,y軸于點P,Q。當(dāng)QE:DP=4:9時,圖中的陰影部分的面積等于     _。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在矩形ABCD中,AB=12cm,BC=8cm.點E、F、G分別從點A、B、C同時出發(fā),沿矩形的邊按逆時針方向移動,點E、G的速度均為2cm/s,點F的速度為4cm/s,當(dāng)點F追上點G(即點F與點G重合)時,三個點隨之停止移動.設(shè)移動開始后第ts時,△EFG的面積為Scm2。

     

(1)當(dāng)=1s時,S的值是多少?

(2) 當(dāng)時,點E、F、G分別在邊AB、BC、CD上移動,用含t的代數(shù)式表示S;當(dāng)時,點E在邊AB上移動,點F、G都在邊CD上移動,用含t的代數(shù)式表示S.

(3)若點F在矩形的邊BC上移動,當(dāng)為何值時,以點B、E、F為頂點的三角形與以C、F、G為頂點的三角形相似?請說明理由

查看答案和解析>>

同步練習(xí)冊答案