如圖,⊙O的半徑是2,直線l與⊙O相交于A、B兩點(diǎn),M、N是⊙O上的兩個(gè)動(dòng)點(diǎn),且在直線l的異側(cè),若∠AMB=45°,則四邊形MANB面積的最大值是
 
考點(diǎn):垂徑定理,圓周角定理
專題:壓軸題
分析:過點(diǎn)O作OC⊥AB于C,交⊙O于D、E兩點(diǎn),連結(jié)OA、OB、DA、DB、EA、EB,根據(jù)圓周角定理得∠AOB=2∠AMB=90°,則△OAB為等腰直角三角形,所以AB=
2
OA=2
2
,由于S四邊形MANB=S△MAB+S△NAB,而當(dāng)M點(diǎn)到AB的距離最大,△MAB的面積最大;當(dāng)N點(diǎn)到AB的距離最大時(shí),△NAB的面積最大,即M點(diǎn)運(yùn)動(dòng)到D點(diǎn),N點(diǎn)運(yùn)動(dòng)到E點(diǎn),所以四邊形MANB面積的最大值=S四邊形DAEB=S△DAB+S△EAB=
1
2
AB•CD+
1
2
AB•CE=
1
2
AB(CD+CE)=
1
2
AB•DE=
1
2
×2
2
×4=4
2
解答:解:過點(diǎn)O作OC⊥AB于C,交⊙O于D、E兩點(diǎn),連結(jié)OA、OB、DA、DB、EA、EB,如圖,
∵∠AMB=45°,
∴∠AOB=2∠AMB=90°,
∴△OAB為等腰直角三角形,
∴AB=
2
OA=2
2

∵S四邊形MANB=S△MAB+S△NAB,
∴當(dāng)M點(diǎn)到AB的距離最大,△MAB的面積最大;當(dāng)N點(diǎn)到AB的距離最大時(shí),△NAB的面積最大,
即M點(diǎn)運(yùn)動(dòng)到D點(diǎn),N點(diǎn)運(yùn)動(dòng)到E點(diǎn),
此時(shí)四邊形MANB面積的最大值=S四邊形DAEB=S△DAB+S△EAB=
1
2
AB•CD+
1
2
AB•CE=
1
2
AB(CD+CE)=
1
2
AB•DE=
1
2
×2
2
×4=4
2

故答案為:4
2
點(diǎn)評(píng):本題考查了垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對(duì)的兩條。部疾榱藞A周角定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線與BC的延長(zhǎng)線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),DG⊥AE,垂足為G,若DG=1,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,下列圖形是將正三角形按一定規(guī)律排列,則第5個(gè)圖形中所有正三角形的個(gè)數(shù)有
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

不等式組
x<2x+1
3x-2(x-1)≤4
的解集為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

袋中裝有編號(hào)為1,2,3的三個(gè)質(zhì)地均勻,大小相同到球,從中隨機(jī)取出一球記下編號(hào)后,放入袋中攪勻,再?gòu)拇须S機(jī)取出一球,兩次所取球的編號(hào)相同的概率為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

分式方程
1
x-1
=
1
2x
的解為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在綜合實(shí)踐課上,六名同學(xué)的作品數(shù)量(單位:件)分別為:3、5、2、5、5、7,則這組數(shù)據(jù)的眾數(shù)為
 
件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

給出下列圖形名稱:(1)線段;(2)直角;(3)等腰三角形;(4)平行四邊形;(5)長(zhǎng)方形,在這五種圖形中是軸對(duì)稱圖形的有(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線過點(diǎn)C,且對(duì)稱軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動(dòng)點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)填空:點(diǎn)A坐標(biāo)為
 
;拋物線的解析式為
 

(2)在圖①中,若點(diǎn)P在線段OC上從點(diǎn)O向點(diǎn)C以1個(gè)單位/秒的速度運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CE上從點(diǎn)C向點(diǎn)E以2個(gè)單位/秒的速度運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng).當(dāng)t為何值時(shí),△PCQ為直角三角形?
(3)在圖②中,若點(diǎn)P在對(duì)稱軸上從點(diǎn)A開始向點(diǎn)B以1個(gè)單位/秒的速度運(yùn)動(dòng),過點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時(shí),△ACQ的面積最大?最大值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案