如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A(1,0)、B(5,0)、C(0,5)三點.
(1)求這個二次函數(shù)的解析式;
(2)過點C的直線y=kx+b與這個二次函數(shù)的圖象相交于點E(4,m),請求出△CBE的面積S的值.
精英家教網(wǎng)
分析:(1)根據(jù)二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A(1,0)、B(5,0)、C(0,5)三點,得到y(tǒng)=a(x-1)(x-5),把C的坐標(biāo)代入就能求出a的值,即可得出二次函數(shù)的解析式;
(2)把E的坐標(biāo)代入拋物線即可求出m的值,設(shè)直線EC的解析式是y=kx+b,把E、C的坐標(biāo)代入就能求出直線EC,求直線EC與X軸的交點坐標(biāo),過E作EN⊥X軸于N,根據(jù)點的坐標(biāo)求出△CBM和△BME的面積,相加即可得到答案.
解答:(1)解:∵二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A(1,0)、B(5,0),
∴設(shè)y=ax2+bx+c=a(x-1)(x-5),
把C(0,5)代入得:5=5a,
解得:a=1,
∴y=(x-1)(x-5),
即y=x2-6x+5,
答:這個二次函數(shù)的解析式是y=x2-6x+5.

(2)y=x2-6x+5,
當(dāng)x=4時,m=16-24+5=-3,
∴E(4,-3),精英家教網(wǎng)
設(shè)直線EC的解析式是y=kx+b,
把E(4,-3),C(0,5)代入得:
-3=4k+b
5=b

解得:
k=-2
b=5
,
∴直線EC的解析式是y=-2x+5,
當(dāng)y=0時0=-2x+5,
解得:x=
5
2

∴M的坐標(biāo)是(
5
2
,0),
過E作EN⊥X軸于N,
∴EN=|-3|=3,BM=5-
5
2
=
5
2
,
∴S△CBE=S△CBM+S△BME=
1
2
×
5
2
×5+
1
2
×
5
2
×3=10,
答:△CBE的面積S的值是10.
點評:本題主要考查了用待定系數(shù)法求一次函數(shù)和二次函數(shù)的解析式,二次函數(shù)圖象上點的坐標(biāo)特征,解二元一次方程組,三角形的面積等知識點,能求一次函數(shù)和二次函數(shù)的解析式是解此題的關(guān)鍵,此題是一個綜合性比較強的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)圖象的頂點坐標(biāo)為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點,其中A點坐標(biāo)為(
5
2
13
4
),B點在y軸上,直線與x軸的交點為F,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于E點.
(1)求k,m的值及這個二次函數(shù)的解析式;
(2)設(shè)線段PE的長為h,點P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數(shù)圖象對稱軸的交點,在線段AB上是否存在點P,使得以點P、E、D為頂點的精英家教網(wǎng)三角形與△BOF相似?若存在,請求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點A(-1,0)和點B(3,0)兩點(點A在點B的左邊),與y軸交于點C.
(1)求此二次函數(shù)的解析式,并寫出它的對稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點D(不與點B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點的三角形與△BAC相似?若存在,求出點D的坐標(biāo);若不存在,請說明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點坐標(biāo)為C(1,0),直線y=x+b與該二次函數(shù)的圖象交于A、B兩點,其中點A的坐標(biāo)為(3,4),點B在y軸上.點P為線段AB上的一個動點(點P與A、B不重合),過點P作x軸的垂線與該二次函數(shù)的圖象交于點E.
(1)求b的值及這個二次函數(shù)的關(guān)系式;
(2)設(shè)線段PE的長為h,點P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若點D為直線AB與該二次函數(shù)的圖象對稱軸的交點,則四邊形DCEP能否構(gòu)成平行四邊形?如果能,請求出此時P點的坐標(biāo);如果不能,請說明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請求出點P的坐標(biāo);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標(biāo)軸交于點A(-1,0)和點C(0,-5).
(1)求該二次函數(shù)的解析式和它與x軸的另一個交點B的坐標(biāo).
(2)在上面所求二次函數(shù)的對稱軸上存在一點P(2,-2),連接OP,找出x軸上所有點M的坐標(biāo),使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積;
(3)若拋物線的頂點為D,在y軸上是否存在一點P,使得△PAD的周長最?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案