【題目】直線l1l2l3,且l1l2的距離為1.l2l3的距離為2,把∠ACB=30°的直角三角板如圖放置,頂點A,B,C恰好落在三條直線上,則線段AB的長為_____

【答案】

【解析】

A作作AEl3E,過CCFl3F,根據(jù)已知條件得到,根據(jù)相似三角形的性質(zhì)得到BE,然后根據(jù)勾股定理即可得到結(jié)論.

解:過A作作AEl3E,過CCFl3F,

∵∠ABC90°,∠ACB30°

tan30°,

∵直線l1l2l3,

CFl1,

AE2,CF3,

AEl3,CFl3,

∴∠AEB=∠CFB90°,

∵∠ABC90°,

∴∠ABE+CBF=∠ABE+EAB90°,

∴∠EAB=∠FBC,

∴△AEB∽△BFC

,

BE

AE2,

AB=

故答案是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A在反比例函數(shù)y=(x>0)的圖象上,作Rt△ABC,邊BC在x軸上,點D為斜邊AC的中點,連結(jié)DB并延長交y軸于點E,若△BCE的面積為4,則k的值是( 。

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知為正方形的中心,分別延長到點 到點,使 ,連結(jié),將△繞點逆時針旋轉(zhuǎn)角得到△(如圖2).連結(jié)、

(Ⅰ)探究的數(shù)量關(guān)系,并給予證明;

(Ⅱ)當, 時,求:

的度數(shù);

的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某測量隊在山腳A處測得山上樹頂仰角為45°(如圖),測量隊在山坡上前進600米到D處,再測得樹頂?shù)难鼋菫?/span>60°,已知這段山坡的坡角為30°,如果樹高為15米,則山高為( 。ň_到1米, =1.732).

A. 585 B. 1014 C. 805 D. 820

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點EAD的延長線上一點,且DEDC,點P為邊AD上一動點,且PCPG,PGPC,點FEG的中點.當點PD點運動到A點時,則CF的最小值為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的OAC于點D,點EBC的中點,連接DE

(1)求證:DEO的切線;

(2)求證:4DE2CDAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】熱氣球的探測器顯示,從熱氣球底部A處看一棟高樓頂部的俯角為30°,看這棟樓底部的俯角為60°,熱氣球A處與地面距離為420米,求這棟樓的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的頂點坐標分別為A(﹣4,5),B(﹣5,2),C(﹣3,4)

(1)畫出與ABC關(guān)于原點O對稱的A1B1C1,并寫出點A1的坐標為   ;

(2)Dx軸上一點,使DB+DC的值最小,畫出點D(保留畫圖痕跡);

(3)Pt,0)是x軸上的動點,將點C繞點P順時針旋轉(zhuǎn)90°至點E,直線y=﹣2x+5經(jīng)過點E,則t的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點GD,C在直線a上,點E,F,A,B在直線b上,若ab,RtGEF從如圖所示的位置出發(fā),沿直線b向右勻速運動,直到EGBC重合.運動過程中GEF與矩形ABCD重合部分的面積(S)隨時間(t)變化的圖象大致是(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案