【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件贏利40元,為了擴(kuò)大銷售,增加贏利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出2件.求:
(1)若商場平均每天要贏利1200元,每件襯衫應(yīng)降價多少元?
(2)每件襯衫降價多少元時,商場平均每天贏利最多?
【答案】(1)每件襯衫應(yīng)降價20元;(2)當(dāng)每件襯衫降價15元時,專賣店每天獲得的利潤最大,最大利潤是1250元.
【解析】
(1)設(shè)每件襯衫降價x元,商場平均每天盈利y元,可得每件盈利元,每天可以售出件,進(jìn)而得到商場平均每天盈利元,依據(jù)方程即可得到x的值;
(2)用“配方法”即可求出y的最大值,即可得到每件襯衫降價多少元.
解:(1)設(shè)每件襯衫降價x元,商場平均每天盈利y元,
則,
當(dāng)時,,
解得,,
經(jīng)檢驗(yàn),,都是原方程的解,但要盡快減少庫存,
所以,
答:每件襯衫應(yīng)降價20元;
(2),
當(dāng)時,y的最大值為1250,
答:當(dāng)每件襯衫降價15元時,專賣店每天獲得的利潤最大,最大利潤是1250元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中的點(diǎn)P和圖形M,給出如下的定義:若在圖形M存在一點(diǎn)Q,使得P、Q兩點(diǎn)間的距離小于或等于1,則稱P為圖形M的關(guān)聯(lián)點(diǎn).
(1)當(dāng)⊙O的半徑為2時,
①在點(diǎn) 中,⊙O的關(guān)聯(lián)點(diǎn)是_______________.
②點(diǎn)P在直線y=-x上,若P為⊙O 的關(guān)聯(lián)點(diǎn),求點(diǎn)P的橫坐標(biāo)的取值范圍.
(2)⊙C 的圓心在x軸上,半徑為2,直線y=-x+1與x軸、y軸交于點(diǎn)A、B.若線段AB上的所有點(diǎn)都是⊙C的關(guān)聯(lián)點(diǎn),直接寫出圓心C的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD是邊AB上的中線,∠B是銳角,sinB=,tanA=,AC=,
(1)求∠B 的度數(shù)和 AB 的長.
(2)求 tan∠CDB 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過A(﹣1,0)、B(3,0)兩點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)若p為x軸上方拋物線上一點(diǎn),且三角形PAB面積為20,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點(diǎn)C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);
③點(diǎn)Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中學(xué)數(shù)學(xué)活動小組在學(xué)習(xí)了“利用三角函數(shù)測高”后,選定測量小河對岸一幢建筑物BC的高度,他們先在斜坡上的D處,測得建筑物頂端B的仰角為30°.且D離地面的高度DE=5m.坡底EA=30m,然后在A處測得建筑物頂端B的仰角是60°,點(diǎn)E,A,C在同一水平線上,求建筑物BC的高.(結(jié)果用含有根號的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為好玩三角形.若Rt△ABC是好玩三角形,且∠C=90°,BC≥AC,則sinB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,⊙O過正方形ABCD的頂點(diǎn)A、D且與邊BC相切于點(diǎn)E,分別交AB、DC于點(diǎn)M、N.動點(diǎn)P在⊙O或正方形ABCD的邊上以每秒一個單位的速度做連續(xù)勻速運(yùn)動.設(shè)運(yùn)動的時間為x,圓心O與P點(diǎn)的距離為y,圖2記錄了一段時間里y與x的函數(shù)關(guān)系,在這段時間里P點(diǎn)的運(yùn)動路徑為( )
A. 從D點(diǎn)出發(fā),沿弧DA→弧AM→線段BM→線段BC
B. 從B點(diǎn)出發(fā),沿線段BC→線段CN→弧ND→弧DA
C. 從A點(diǎn)出發(fā),沿弧AM→線段BM→線段BC→線段CN
D. 從C點(diǎn)出發(fā),沿線段CN→弧ND→弧DA→線段AB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)是反比例函數(shù)在第一象限圖像上的一個動點(diǎn),連接,以 為長,為寬作矩形,且點(diǎn)在第四象限,隨著點(diǎn)的運(yùn)動,點(diǎn)也隨之運(yùn)動,但點(diǎn)始終在反比例函數(shù)的圖像上,則的值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com