【題目】如圖所示,,點(diǎn)在軸上,將三角形沿軸負(fù)方向平移,平移后的圖形為三角形,且點(diǎn)的坐標(biāo)為.
(1)直接寫(xiě)出點(diǎn)的坐標(biāo)為 ;
(2)在四邊形中,點(diǎn)從點(diǎn)出發(fā),沿“”移動(dòng),若點(diǎn)的速度為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為秒,回答下問(wèn)題:
①求點(diǎn)在運(yùn)動(dòng)過(guò)程中的坐標(biāo)(用含的式子表示,寫(xiě)出過(guò)程);
②當(dāng) 秒時(shí),點(diǎn)的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);
③當(dāng)秒秒時(shí),設(shè),,,試問(wèn)之間的數(shù)量關(guān)系能否確定?若能,請(qǐng)用含的式子表式,寫(xiě)出過(guò)程;若不能,說(shuō)明理由.
【答案】(1);(2)①,;② 2;③能,,見(jiàn)解析
【解析】
(1)根據(jù)平移的性質(zhì)即可得到結(jié)論;
(2)①當(dāng)點(diǎn)P在線段BC上時(shí),點(diǎn)P的坐標(biāo)(-t,2),當(dāng)點(diǎn)P在線段CD上時(shí),點(diǎn)P的坐標(biāo)(-3,5-t);
②由點(diǎn)C的坐標(biāo)為(-3,2).得到BC=3,CD=2,由于點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);于是確定點(diǎn)P在線段BC上,有PB=CD,即可得到結(jié)果;
③如圖,過(guò)P作PF∥BC交AB于F,則PF∥AD,根據(jù)平行線的性質(zhì)即可得到結(jié)論.
(1)根據(jù)題意,可得
三角形OAB沿x軸負(fù)方向平移3個(gè)單位得到三角形DEC,
∵點(diǎn)A的坐標(biāo)是(1,0),
∴點(diǎn)E的坐標(biāo)是(-2,0);
故答案為:(-2,0);
(2)①當(dāng)點(diǎn)P在線段BC上時(shí),點(diǎn)P的坐標(biāo)(-t,2),
當(dāng)點(diǎn)P在線段CD上時(shí),點(diǎn)P的坐標(biāo)(-3,5-t);
②∵點(diǎn)C的坐標(biāo)為(-3,2),
∴BC=3,CD=2,
∵點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);
∴點(diǎn)P在線段BC上,
∴PB=CD,
即t=2;
∴當(dāng)t=2秒時(shí),點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);
故答案為:2;
③能確定,
如圖,過(guò)P作PF∥BC交AB于F,
則PF∥AD,
∴∠1=∠CBP=x°,∠2=∠DAP=y°,
∴∠BPA=∠1+∠2=x°+y°=z°,
∴z=x+y.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,大圓的弦AB、AC分別切小圓于點(diǎn)M、N.
(1)求證:AB=AC;
(2)若AB=8,求圓環(huán)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是弧的中點(diǎn),⊙O的切線BD交AC的延長(zhǎng)線于點(diǎn)D,E是OB的中點(diǎn),CE的延長(zhǎng)線交切線BD于點(diǎn)F,AF交⊙O于點(diǎn)H,連接BH.
⑴求證:AC=CD.
⑵若OB=2,求BH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P為正方形ABCD的對(duì)角線上任一點(diǎn),PE⊥AB于E,PF⊥BC于F.
(1)判斷DP與EF的關(guān)系,并證明;
(2)若正方形ABCD的邊長(zhǎng)為6,∠ADP:∠PDC=1:3.求PE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,點(diǎn)C在AOB的一邊OA上,過(guò)點(diǎn)C的直線DE//OB,CF平分ACD,CG CF于C .
(1)若O =40,求ECF的度數(shù);
(2)求證:CG平分OCD;
(3)當(dāng)O為多少度時(shí),CD平分OCF,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6cm,AD=10cm,點(diǎn)P在AD邊上以每秒1cm的速度從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)Q在BC邊上以每秒4cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí)停止運(yùn)動(dòng),同時(shí)點(diǎn)Q也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為ts,當(dāng)t為何值時(shí),以P,D,Q,B為頂點(diǎn)的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的頂點(diǎn)A(6,0),C(0,4)點(diǎn)D與坐標(biāo)原點(diǎn)O重合,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位的速度沿O﹣A﹣B﹣C的路線向終點(diǎn)C運(yùn)動(dòng),連接OP、CP,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,△CPO的面積為S,下列圖象能表示t與S之間函數(shù)關(guān)系的是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線交y軸于點(diǎn)A,交直線x=6于點(diǎn)B.
(1)填空:拋物線的對(duì)稱軸為x=_________,點(diǎn)B的縱坐標(biāo)為__________(用含a的代數(shù)式表示);
(2)若直線AB與x軸正方向所夾的角為45°時(shí),拋物線在x軸上方,求的值;
(3)記拋物線在A、B之間的部分為圖像G(包含A、B兩點(diǎn)),若對(duì)于圖像G上任意一點(diǎn),總有≤3,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某檢修小組從A地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負(fù),一天中七次行駛記錄如下。(單位:km)
(1)在第幾次記錄時(shí)離A地最遠(yuǎn),并求出最遠(yuǎn)距離。
(2)求收工時(shí)距A地多遠(yuǎn)?在A地的什么方向?
(3)若每千米耗油0.3升,問(wèn)共耗油多少升?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com