【題目】正方形ABCD和正方形AEFGAB12AE6.設(shè)∠BAEα(0°≤α45°,點(diǎn)E在正方形ABCD內(nèi)部)BE的延長(zhǎng)線交直線DG于點(diǎn)Q

1)求證:△ADG≌△ABE;

2)試求出當(dāng)α0°變化到45°過程中,點(diǎn)Q運(yùn)動(dòng)的路線長(zhǎng),并畫出點(diǎn)Q的運(yùn)動(dòng)路徑;直接寫出當(dāng)α等于多少度時(shí),點(diǎn)G恰好在點(diǎn)Q運(yùn)動(dòng)的路徑上.

【答案】1)證明見解析;(2)圖見解析;

【解析】

1)由正方形的性質(zhì)得出ADAB,AGAE,∠EAG=∠BAD90°,易證∠DAG=∠BAE,由SAS證得△ADG≌△ABE;

2)由△ADG≌△ABE,得出∠ADG=∠ABE,則∠BQD=∠BAD90°,得出點(diǎn)Q的運(yùn)動(dòng)軌跡是以BD為直徑的,所對(duì)的圓心角是90°,BDAB12,則點(diǎn)Q的運(yùn)動(dòng)路徑長(zhǎng)=3π,由AE6,得出AEAGBDOD,當(dāng)B、E、G三點(diǎn)共線,且OGOD時(shí),QG重合,則△OAG是等邊三角形,得出∠GAO60°,推出∠BAE=∠DAG60°﹣45°=15°,即可得出結(jié)果.

1)證明:∵四邊形ABCD與四邊形AEFG是正方形,

ADAB,AGAE,∠EAG=∠BAD90°,

∴∠DAG+DAE=∠BAE+DAE90°,

∴∠DAG=∠BAE,

在△ADG和△ABE中,

∴△ADG≌△ABE(SAS);

2)解:∵△ADG≌△ABE,

∴∠ADG=∠ABE,

∴∠BQD=∠BAD90°,

∴點(diǎn)Q的運(yùn)動(dòng)軌跡是以BD為直徑的,所對(duì)的圓心角是90°,

AB12,

BDAB12

∴點(diǎn)Q的運(yùn)動(dòng)路徑長(zhǎng)=3π,

點(diǎn)Q的運(yùn)動(dòng)路徑如圖1所示:

AE6

AEAGBDOD,

當(dāng)BE、G三點(diǎn)共線,且OGOD時(shí),QG重合,如圖2所示:

則△OAG是等邊三角形,

∴∠GAO60°,

∵∠DAC45°,

∴∠BAE=∠DAG60°﹣45°=15°,

∴當(dāng)α15°時(shí),點(diǎn)G恰好在點(diǎn)Q運(yùn)動(dòng)的路徑上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是直徑AB所對(duì)的半圓弧,點(diǎn)P與直徑AB所圍成圖形的外部的一個(gè)定點(diǎn),AB=8cm,點(diǎn)C上一動(dòng)點(diǎn),連接PCAB于點(diǎn)D

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)線段AD,CD,PD,進(jìn)行了研究,設(shè)A,D兩點(diǎn)間的距離為x cmC,D兩點(diǎn)間的距離為cmP,D兩點(diǎn)之間的距離為cm

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù),隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是小明的探究過程,請(qǐng)補(bǔ)充完整:

1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,分別得到了,x的幾組對(duì)應(yīng)值:

x/cm

0.00

1.00

2.00

3.00

3.20

4.00

5.00

6.00

6.50

700

8.00

/cm

0.00

1.04

2.09

3.11

3.30

4.00

4.41

3.46

2.50

153

0.00

/cm

6.24

5.29

4.35

3.46

3.30

2.64

2.00

m

1.80

2.00

2.65

補(bǔ)充表格;(說明:補(bǔ)全表格時(shí),相關(guān)數(shù)值保留兩位小數(shù))

2)在同一平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn),并畫出函數(shù)的圖象:

3)結(jié)合函數(shù)圖象解決問題:當(dāng)AD2PD 時(shí),AD的長(zhǎng)度約為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y1=的圖象與直線y23x5相交于A(2,m)B(n,-6)兩點(diǎn).

(1)求反比例函數(shù)的表達(dá)式;

(2) 當(dāng)y1y20時(shí),請(qǐng)直接寫出x的取值范圍;

(3)連接OA,OB,求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,為原點(diǎn),點(diǎn)軸上,點(diǎn)軸上,點(diǎn)的坐標(biāo)為(4,3),拋物線軸交于點(diǎn),與直線交于點(diǎn),與軸交于兩點(diǎn).

1)求拋物線的表達(dá)式;

2)點(diǎn)從點(diǎn)出發(fā),在線段上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),與此同時(shí),點(diǎn)從點(diǎn)出發(fā),在線段上以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).連接,設(shè)運(yùn)動(dòng)時(shí)間為(秒).

①當(dāng)為何值時(shí),得面積最?

②是否存在某一時(shí)刻,使為直角三角形?若存在,直接寫出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)了矩形這節(jié)內(nèi)容之后,明明同學(xué)發(fā)現(xiàn)生活中的很多矩形都很特殊,如我們的課本封面、A4 的打印紙等,這些矩形的長(zhǎng)與寬之比都為1,我們將具有這類特征的矩形稱為“完美矩形”如圖(1,在“完美矩形”ABCD 中,點(diǎn) P AB 邊上的定點(diǎn),且 APAD

(1)求證:PDAB

(2)如圖(2),若在“完美矩形“ABCD 的邊 BC 上有一動(dòng)點(diǎn) E,當(dāng)的值是多少時(shí),△PDE 的周長(zhǎng)最。

(3)如圖(3),點(diǎn) Q 是邊 AB 上的定點(diǎn),且 BQBC.已知 AD1,在(2)的條件下連接 DE 并延長(zhǎng)交 AB 的延長(zhǎng)線于點(diǎn) F,連接 CFG CF 的中點(diǎn),M、N 分別為線段 QF CD 上的動(dòng)點(diǎn),且始終保持 QMCNMN DF 相交于點(diǎn) H,請(qǐng)問 GH 的長(zhǎng)度是定值嗎?若是,請(qǐng)求出它的值,若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不透明的袋中有四個(gè)小球,分別標(biāo)有數(shù)字123、4,它們除了數(shù)字外都相同。第一次從中摸出一個(gè)小球,記錄數(shù)字后放回袋中,第二次搖勻后再隨機(jī)摸出一個(gè)小球.

1)求第一次摸出的小球所標(biāo)數(shù)字是偶數(shù)的概率;

2)求兩次摸出的小球所標(biāo)數(shù)字相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為落實(shí)立德樹人的根本任務(wù),加強(qiáng)思改、歷史學(xué)科教師的專業(yè)化隊(duì)伍建設(shè).某校計(jì)劃從前來(lái)應(yīng)聘的思政專業(yè)(一名研究生,一名本科生)、歷史專業(yè)(一名研究生、一名本科生)的高校畢業(yè)生中選聘教師,在政治思想審核合格的條件下,假設(shè)每位畢業(yè)生被錄用的機(jī)會(huì)相等

1)若從中只錄用一人,恰好選到思政專業(yè)畢業(yè)生的概率是

2)若從中錄用兩人,請(qǐng)用列表或畫樹狀圖的方法,求恰好選到的是一名思政研究生和一名歷史本科生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從﹣2,﹣10,,12這六個(gè)數(shù)字中,隨機(jī)抽取一個(gè)數(shù)記為a,則使得關(guān)于x的方程1的解為非負(fù)數(shù),且滿足關(guān)于x的不等式組只有三個(gè)整數(shù)解的概率是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣2x2+(m+9)x6的對(duì)稱軸是x2

1)求拋物線表達(dá)式和頂點(diǎn)坐標(biāo);

2)將該拋物線向右平移1個(gè)單位,平移后的拋物線與原拋物線相交于點(diǎn)A,求點(diǎn)A的坐標(biāo);

3)拋物線y=﹣2x2+(m+9)x6y軸交于點(diǎn)C,點(diǎn)A關(guān)于平移后拋物線的對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)B,兩條拋物線在點(diǎn)A、C和點(diǎn)A、B之間的部分(包含點(diǎn)A、B、C)記為圖象M.將直線y2x2向下平移bb0)個(gè)單位,在平移過程中直線與圖象M始終有兩個(gè)公共點(diǎn),請(qǐng)你寫出b的取值范圍   

查看答案和解析>>

同步練習(xí)冊(cè)答案