【題目】二次函數(shù)(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是
A. a>0 B. 當(dāng)﹣1<x<3時,y>0
C. c<0 D. 當(dāng)x≥1時,y隨x的增大而增大
【答案】B
【解析】
試題由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷:
A.拋物線的開口方向向下,則a<0,故本選項(xiàng)錯誤;
B.根據(jù)圖示知,拋物線的對稱軸為x=1,拋物線與x軸的一交點(diǎn)的橫坐標(biāo)是﹣1,則拋物線與x軸的另一交點(diǎn)的橫坐標(biāo)是3,所以當(dāng)﹣1<x<3時,y>0,故本選項(xiàng)正確;
C.根據(jù)圖示知,該拋物線與y軸交與正半軸,則c>0,故本選項(xiàng)錯誤;
D.根據(jù)圖示知,當(dāng)x≥1時,y隨x的增大而減小,故本選項(xiàng)錯誤。
故選B。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一枚質(zhì)地均勻的正六面體骰子的六個面分別標(biāo)有數(shù)字,,,,,,如圖2,正方形的頂點(diǎn)處各有一個圈,跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子朝上的那面上的數(shù)字是幾,就沿正方形的邊按順時針方向連續(xù)跳幾個邊長。如:若從圈起跳,第一次擲得,就順時針連續(xù)跳個邊長,落在圈;若第二次擲得,就從圈開始順時針連續(xù)跳個邊長,落得圈;…設(shè)游戲者從圈起跳.
(1)小賢隨機(jī)擲一次骰子,求落回到圈的概率.
(2)小南隨機(jī)擲兩次骰子,用列表法求最后落回到圈的概率,并指出他與小賢落回到圈的可能性一樣嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y1=x2+mx+n的圖象經(jīng)過點(diǎn)P(﹣3,1),對稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線.
(1)求m,n的值.
(2)如圖,一次函數(shù)y2=kx+b的圖象經(jīng)過點(diǎn)P,與x軸相交于點(diǎn)A,與二次函數(shù)的圖象相交于另一點(diǎn)B,點(diǎn)B在點(diǎn)P的右側(cè),PA:PB=1:5,求一次函數(shù)的表達(dá)式.
(3)直接寫出y1>y2時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=﹣1,且過點(diǎn)(﹣3,0).下列說法:其中說法正確的是( )①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是拋物線上兩點(diǎn),則y1>y2.
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:
來源: 題型:【題目】在平面直角坐標(biāo)系xOy中,拋物線y=2x2+mx+n經(jīng)過點(diǎn)A(0,﹣2),B(3,4).
(1)求拋物線的表達(dá)式及對稱軸;
(2)設(shè)點(diǎn)B關(guān)于原點(diǎn)的對稱點(diǎn)為C,點(diǎn)D是拋物線對稱軸上一動點(diǎn),且點(diǎn)D縱坐標(biāo)為t,記拋物線在A,B之間的部分為圖象G(包含A,B兩點(diǎn)).若直線CD與圖象G有公共點(diǎn),結(jié)合函數(shù)圖象,求點(diǎn)D縱坐標(biāo)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn)A(,0)、點(diǎn)B(2,0),與y軸交于點(diǎn)C(0,1),連接BC.
(1)求拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)N為拋物線上的一個動點(diǎn),過點(diǎn)N作NP⊥x軸于點(diǎn)P,設(shè)點(diǎn)N的橫坐標(biāo)為t(),求△ABN的面積S與t的函數(shù)關(guān)系式;
(3)若且時△OPN∽△COB,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點(diǎn)E,若BF=6,AB=4,則AE的長為( 。
A. B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com