【題目】如圖,在平面直角坐標系中,三角形ABC的頂點坐標分別是A(0,0),B(6,0),C(5,5).
(1)求三角形ABC的面積;
(2)如果三角形ABC的三個頂點的縱坐標不變,橫坐標增加3個單位長度,得到三角形A1B1C1,試在圖中畫出三角形A1B1C1,并寫出點A1,B1,C1的坐標;
(3)(2)中三角形A1B1C1與三角形ABC的大小、形狀有什么關系?
【答案】(1)S三角形ABC=15;(2)圖形見解析,A1(3,0),B1(9,0),C1(8,5);(3)三角形A1B1C1與三角形ABC的大小、形狀均相同.
【解析】
(1)根據圖形求出AB的長,點C到AB的長度,然后利用三角形的面積公式列式進行計算即可得解;
(2)根據網格結構,找出點A、B、C向右平移3個單位的對應點A1,B1,C1的位置,然后順次連接即可,再根據平面直角坐標系寫出點A1,B1,C1的坐標;
(3)根據平移變換只改變圖形的位置不改變圖形的形狀與大小解答.
(1)∵A(0,0),B(6,0),C(5,5),
∴AB=6,點C到AB的距離為5,
∴S△ABC=×6×5=15;
(2)三角形A1B1C1如圖所示,A1(3,0),B1(9,0),C1(8,5);
(3)三角形A1B1C1與三角形ABC的大小、形狀相同.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系 中,已知直線 ( )分別交反比例函數 和 在第一象限的圖象于點 , ,過點 作 軸于點 ,交 的圖象于點 ,連結 .若 是等腰三角形,則 的值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.
(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經過1s后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經過多長時間點P與點Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰三角形ABC底邊BC的長為4cm,面積是12cm2,腰AB的垂直平分線EF交AC于點F,若D為BC邊上的中點,M為線段EF上一動點,則△BDM的周長最短為______cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,點D為AB的中點.如果點P在線段BC上以每秒2厘米的速度由B點向C點運動,同時,點Q在線段CA上以每秒a厘米的速度由C點向A點運動,設運動時間為t(秒)(0≤t≤3).
(1)用的代數式表示PC的長度;
(2)若點P、Q的運動速度相等,經過1秒后,△BPD與△CQP是否全等,請說明理由;
(3)若點P、Q的運動速度不相等,當點Q的運動速度a為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直角坐標系中,我們把橫、縱坐標都為整數的點稱為整點,記頂點都是整點的三角形為整點三角形.如圖,已知整點A(2,3),B(4,4),請在所給網格區(qū)域(含邊界)上按要求畫整點三角形.
(1)在圖1中畫一個△PAB,使點P的橫、縱坐標之和等于點A的橫坐標;
(2)在圖2中畫一個△PAB,使點P,B橫坐標的平方和等于它們縱坐標和的4倍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,銳角△ABC中,D、E分別是AB、AC邊上的點,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于點F.若∠BAC=35°,則∠BFC的大小是( 。
A. 105° B. 110° C. 100° D. 120°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4)
(1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1;
(2)請畫出△ABC關于原點O成中心對稱的圖形△A2B2C2;
(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com