【題目】已知點(diǎn)P為拋物線y=x2+2x﹣3在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),且P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P′恰好也落在該拋物線上,則點(diǎn)P′的坐標(biāo)為(  )

A. (﹣1,﹣1) B. (﹣2,﹣ C. (﹣,﹣2﹣1) D. (﹣,﹣2

【答案】D

【解析】分析:

設(shè)點(diǎn)P的坐標(biāo)為(x,y),則點(diǎn)P′的坐標(biāo)為(-x,-y),把兩個(gè)點(diǎn)的坐標(biāo)代入y=x2+2x﹣3中列出關(guān)于x、y的方程組,解方程組結(jié)合點(diǎn)P在第一象限即可求得點(diǎn)P的坐標(biāo),由此即可得到點(diǎn)P′的坐標(biāo)了.

詳解

設(shè)P點(diǎn)的坐標(biāo)為(x,y),

∵點(diǎn)P′與點(diǎn)P關(guān)于原點(diǎn)對(duì)稱,

∴點(diǎn)P′的坐標(biāo)為(﹣x,﹣y),

把點(diǎn)P(x,y)和點(diǎn)P′(﹣x,﹣y)代入y=x2+2x﹣3得:

,解得: ,

∵點(diǎn)P在第一象限,

∴點(diǎn)P的坐標(biāo)為

∴點(diǎn)P′的坐標(biāo)為.

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)D是邊BC的中點(diǎn),點(diǎn)E在ABC內(nèi),AE平分BAC,CEAE,點(diǎn)F在邊AB上,EFBC

(1)求證:四邊形BDEF是平行四邊形;

(2)線段BF、AB、AC的數(shù)量之間具有怎樣的關(guān)系?證明你所得到的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,AB=8,點(diǎn)P在邊CD上,tanPBC=,點(diǎn)Q是在射線BP上的一個(gè)動(dòng)點(diǎn),過點(diǎn)QAB的平行線交射線AD于點(diǎn)M,點(diǎn)R在射線AD上,使RQ始終與直線BP垂直.

1)如圖1,當(dāng)點(diǎn)R與點(diǎn)D重合時(shí),求PQ的長(zhǎng);

2)如圖2,試探索: 的比值是否隨點(diǎn)Q的運(yùn)動(dòng)而發(fā)生變化?若有變化,請(qǐng)說明你的理由;若沒有變化,請(qǐng)求出它的比值;

3)如圖3,若點(diǎn)Q在線段BP上,設(shè)PQ=xRM=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是矩形ABCD的邊BC的中點(diǎn),連接DEAC于點(diǎn)F

如圖,求證:;

如圖,作G,試探究:當(dāng)ABAD滿足什么關(guān)系時(shí),使得成立?并證明你的結(jié)論;

如圖,以DE為斜邊在矩形ABCD內(nèi)部作等腰,交對(duì)角線BDN,連接AM,若,請(qǐng)直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過、兩點(diǎn),與x軸交于另一點(diǎn)B

求此拋物線的解析式;

已知點(diǎn)在第四象限的拋物線上,求點(diǎn)D關(guān)于直線BC對(duì)稱的點(diǎn)的坐標(biāo).

的條件下,連接BD,問在x軸上是否存在點(diǎn)P,使?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列解題過程,然后解答問題(1)、(2)

解方程:|x+3|=2

當(dāng)x+30時(shí),原方程可化為:x+3=2,解得x=1;

當(dāng)x+3<0時(shí),原方程可化為:x+3=2,解得x=5

所以原方程的解是x=1x=5

(1)解方程:|3x1|5=0;

(2)探究:當(dāng)b為何值時(shí),方程|x2|=b+1①無解;②只有一個(gè)解;③有兩個(gè)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“一帶一路”戰(zhàn)略的影響下,某茶葉經(jīng)銷商準(zhǔn)備把“茶路”融入“絲路”,經(jīng)計(jì)算,他銷售10kgA級(jí)別和20kgB級(jí)別茶葉的利潤(rùn)為4000元,銷售20kgA級(jí)別和10kgB級(jí)別茶葉的利潤(rùn)為3500元.

(1)求每千克A級(jí)別茶葉和B級(jí)別茶葉的銷售利潤(rùn);

(2)若該經(jīng)銷商一次購(gòu)進(jìn)兩種級(jí)別的茶葉共200kg用于出口,其中B級(jí)別茶葉的進(jìn)貨量不超過A級(jí)別茶葉的2倍,請(qǐng)你幫該經(jīng)銷商設(shè)計(jì)一種進(jìn)貨方案使銷售總利潤(rùn)最大,并求出總利潤(rùn)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)動(dòng)車出發(fā)前油箱內(nèi)有42升油,行駛?cè)舾尚r(shí)后,途中在加油站加油若干升,油箱中余油量Q()與行駛時(shí)間t(時(shí))之間的函數(shù)關(guān)系如圖,回答下列問題(1)機(jī)動(dòng)車行駛________小時(shí)后加油,中途加油_______升;(2)求加油前油箱剩余油量Q與行駛時(shí)間t的函數(shù)關(guān)系,并直接寫出自變量t的取值范圍;(3)如果加油站距目的地還有230千米,車速為40千米/時(shí),要到達(dá)目的地,油箱中的油是否夠用?請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點(diǎn)F,過點(diǎn)E作直線EP與CD的延長(zhǎng)線交于點(diǎn)P,使∠PED=∠C.

(1)求證:PE是⊙O的切線;

(2)求證:ED平分∠BEP;

(3)若⊙O的半徑為5,CF=2EF,求PD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案