己知:如圖,在菱形ABCD中,點(diǎn)E、F分別在邊BC、CD,∠BAF=∠DAE,AE與BD交于點(diǎn)G.

(1)求證:BE=DF;
(2)當(dāng)時(shí),求證:四邊形BEFG是平行四邊形.
證明:(1)∵四邊形ABCD是菱形,∴AB=AD,∠ABC=∠ADF,
∵∠BAF=∠DAE,∴∠BAF﹣∠EAF=∠DAE﹣∠EAF,即:∠BAE=∠DAF。
∴△BAE≌△DAF(ASA)。∴BE=DF。
(2)∵四邊形ABCD是菱形,∴AD∥BC!唷鰽DG∽△EBG!
又∵BE="DF" ,,∴!郍F∥BC。
∴∠DGF=∠DBC=∠BDC!郉F=GF。
又∵BE="DF" ,∴BE=GF。∴四邊形BEFG是平行四邊形。
(1)由菱形的性質(zhì)和∠BAF=∠DAE,證得△ABF與△AFD全等后即可證得結(jié)論。(2)由AD∥BC證得△ADG∽△EBG,從而;由和BE=DF即可得證得。從而根據(jù)平行線分線段成比例定理證得FG∥BC,進(jìn)而得到∠DGF=∠DBC=∠BDC,根據(jù)等腰三角形等角對(duì)等邊的判定和BE="DF" ,證得BE=GF。利用一組對(duì)邊平行且相等即可判定平行四邊形。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC, AB = CD,EAD的中點(diǎn),AD=4,BC=6,點(diǎn)PBC邊上的動(dòng)點(diǎn)(不與點(diǎn)B重合),PEBD相交于點(diǎn)O,設(shè)PB的長(zhǎng)為x.

(1) 當(dāng)P點(diǎn)在BC邊上運(yùn)動(dòng)時(shí),求證:△BOP∽△DOE.
(2) 當(dāng)x = (   )時(shí),四邊形ABPE是平行四邊形;當(dāng)x = (   )時(shí),四邊形ABPE是直角梯形;
(3)當(dāng)PBC上運(yùn)動(dòng)的過(guò)程中,四邊形ABPE會(huì)不會(huì)是等腰梯形?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)平面中,O為原點(diǎn),A(0,6),B(8,0)。點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿射線AO方向運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā),以每秒一個(gè)單位長(zhǎng)度的速度沿x軸正方向運(yùn)動(dòng),P,Q兩動(dòng)點(diǎn)同時(shí)出發(fā),設(shè)移動(dòng)時(shí)間為t(t>0)秒.
(1)在點(diǎn)P,Q的運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)P在AO的延長(zhǎng)線上時(shí),若△POQ與△AOB相似,求t的值;
(2)如圖2,當(dāng)直線PQ與線段AB交于點(diǎn)M,且時(shí),求直線PQ的解析式;
(3)以點(diǎn)O為圓心,OP長(zhǎng)為半徑畫(huà)圓⊙O,以點(diǎn)B為圓心,BQ長(zhǎng)為半徑畫(huà)⊙B,討論⊙O和⊙B的位置關(guān)系,并直接寫(xiě)出相應(yīng)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,△ABE和△ADC是△ABC分別沿著AB、AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)為(        ).
A.60°               B.70°                 C.80°                  D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,AB=8,BC=7,AC=6,有一動(dòng)點(diǎn)P從A沿AB移動(dòng)到B,移動(dòng)速度為2單位/秒,有一動(dòng)點(diǎn)Q從C沿CA移動(dòng)到A,移動(dòng)速度為l單位/秒,問(wèn)兩動(dòng)點(diǎn)同時(shí)出發(fā),移動(dòng)多少時(shí)間時(shí),△PQA與△ABC相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

扇形AOB中,OA、OB是半徑,且∠AOB=90°,OA=6,點(diǎn)C是AB上異于A、B的動(dòng)點(diǎn)。過(guò)點(diǎn)C作CD⊥OA于點(diǎn)D,作CE⊥OB于點(diǎn)E,連接DE,點(diǎn)G、H在線段DE上,且DG=GH=HE.
(1)求證:OG=CH;
(2)當(dāng)點(diǎn)C在AB上運(yùn)動(dòng)時(shí),線段DE的長(zhǎng)是否為定值?若為定值,請(qǐng)求出該值;否則,請(qǐng)說(shuō)明理由;
(3)設(shè)CH,CD,求之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,王華晚上由路燈A下的B處走到C處時(shí),測(cè)得影子CD的長(zhǎng)為1米,繼續(xù)往前走3米到達(dá)E處時(shí),測(cè)得影子EF的長(zhǎng)為2米,已知王華的身高是1.5米,那么路燈A的高度AB等于(    )
A.4.5米  B.6米C.7.2米 D.8米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,矩形ABCD中,點(diǎn)P是線段AD上一動(dòng)點(diǎn),O為BD的中點(diǎn), PO的延長(zhǎng)線交BC于Q.
(1)求證:△ P O D ≌ △Q O B ;
(2)若AD=8厘米,AB=6厘米,P從點(diǎn)A出發(fā),以1厘米/秒的速度向D運(yùn)動(dòng)(不與D重合).設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)用t表示PD的長(zhǎng);并求t為何值時(shí),四邊形P B Q D是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形ABCD中,E為BC上一點(diǎn),DF⊥AE于點(diǎn)F.

小題1:求證:ΔABE∽ΔDFA;
小題2:若AB=6,AD=12,BE=8,求DF的長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案