【題目】數(shù)學(xué)課上,王老師布置如下任務(wù):如圖,△ABC中,BC>AB>AC,在BC邊上取一點P,使∠APC=2∠ABC.
小路的作法如下:
① 作AB邊的垂直平分線,交BC于點P,交AB于點Q;
② 連結(jié)AP.
請你根據(jù)小路同學(xué)的作圖方法,利用直尺和圓規(guī)完成作圖(保留作圖痕跡);并完成以下推理,注明其中蘊含的數(shù)學(xué)依據(jù):
∵ PQ是AB的垂直平分線
∴ AP= , (依據(jù): );
∴ ∠ABC= , (依據(jù): ).
∴ ∠APC=2∠ABC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DO平分∠AOC,OE平分∠BOC,若OA⊥OB,
(1)當(dāng)∠BOC=30°,∠DOE=_______________; 當(dāng)∠BOC=60°,∠DOE=_______________;
(2)通過上面的計算,猜想∠DOE的度數(shù)與∠AOB有什么關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l1:與坐標(biāo)軸交于A,B兩點,直線l2:(≠0)與坐標(biāo)軸交于點C,D.
(1)求點A,B的坐標(biāo);
(2)如圖,當(dāng)=2時,直線l1,l2與相交于點E,求兩條直線與軸圍成的△BDE的面積;
(3)若直線l1,l2與軸不能圍成三角形,點P(a,b)在直線l2:(k≠0)上,且點P在第一象限.
①求的值;
②若,,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板放在同一平面內(nèi),使直角頂點重合于點O
(1)如圖①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度數(shù).
(2)如圖①,你發(fā)現(xiàn)∠AOD與∠BOC的大小有何關(guān)系?∠AOB與∠DOC有何關(guān)系?直接寫出你發(fā)現(xiàn)的結(jié)論.
(3)如圖②,當(dāng)△AOC與△BOD沒有重合部分時,(2)中你發(fā)現(xiàn)的結(jié)論是否還仍然成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:為了測量某棵樹的高度,小剛用長為2m的竹竿做測量工具,移動竹竿,使竹竿、樹的頂端的影子恰好落在地面的同一點,此時,竹竿與這一點距離6m,與樹相距15m,那么這棵的高度為( )
A.5米
B.7米
C.7.5米
D.21米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與思考:
整式乘法與因式分解是方向相反的變形,由 ,
可得 .
利用這個式子可以將某些二次項系數(shù)是1的二次三項式分解因式.
例如:將式子分解因式.
這個式子的常數(shù)項,一次項系,
所以.
解: .
上述分解因式的過程,也可以用十字相乘的形式形象地表示:先分解二次項系數(shù),分別寫在十字交叉線的左上角和左下角;再分解常數(shù)項,分別寫在十字交叉線的右上角和右下角;然后交叉相乘,求代數(shù)和,使其等于一次項系數(shù)(如右圖).
請仿照上面的方法,解答下列問題:
(1)分解因式:=___________________;
(2)若可分解為兩個一次因式的積,則整數(shù)P的所有可能值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,請判斷AB與EF的位置關(guān)系,并說明理由.
解: ,理由如下:
∵AB∥CD,
∴∠B=∠BCD,( )
∵∠B=70°,
∴∠BCD=70°,( )
∵∠BCE=20°,
∴∠ECD=50°,
∵∠CEF=130°,
∴ + =180°,
∴EF∥ ,( )
∴AB∥EF.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明到某服裝商場進行社會調(diào)查,了解到該商場為了激勵營業(yè)員的工作積極性,實行“月總收入=基本工資+計件獎金”的方法,并獲得如下信息:
營業(yè)員 | 小麗 | 小華 |
月銷售件數(shù)(件) | 200 | 150 |
月總收入(元) | 1400 | 1250 |
假設(shè)營業(yè)員的月基本工資為x元,銷售每件服裝獎勵y元.
(1)求x、y的值;
(2)若營業(yè)員小麗某月的總收入不低于1800元,那么小麗當(dāng)月至少要賣服裝多少件?
(3)商場為了多銷售服裝,對顧客推薦一種購買方式:如果購買甲3件,乙2件,丙1件共需315元;如果購買甲1件,乙2件,丙3件共需285元.某顧客想購買甲、乙、丙各一件共需 元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com