【題目】某市為了美化環(huán)境,計(jì)劃在一定的時(shí)間內(nèi)完成綠化面積萬畝的任務(wù),后來市政府調(diào)整了原定計(jì)劃,不但綠化面積要在原計(jì)劃的基礎(chǔ)上增加,而且要提前年完成任務(wù),經(jīng)測算要完成新的計(jì)劃,平均每年的綠化面積必須比原計(jì)劃多萬畝,求原計(jì)劃平均每年的綠化面積.

【答案】原計(jì)劃平均每年完成綠化面積萬畝.

【解析】

本題的相等關(guān)系是:原計(jì)劃完成綠化時(shí)間實(shí)際完成綠化實(shí)際=1.設(shè)原計(jì)劃平均每年完成綠化面積x萬畝,則原計(jì)劃完成綠化完成時(shí)間年,實(shí)際完成綠化完成時(shí)間:年,列出分式方程求解

解:設(shè)原計(jì)劃平均每年完成綠化面積萬畝.

根據(jù)題意可列方程:

去分母整理得:

解得:,

經(jīng)檢驗(yàn):,都是原分式方程的根,因?yàn)榫G化面積不能為負(fù),所以取

答:原計(jì)劃平均每年完成綠化面積萬畝.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】7分)如圖,平行四邊形ABCD中,AB=3cm,BC=5cm∠B=60°GCD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn),EG的延長線與BC的延長線交于點(diǎn)F,連接CE,DF

1)求證:四邊形CEDF是平行四邊形;

2當(dāng)AE= cm時(shí),四邊形CEDF是矩形;

當(dāng)AE= cm時(shí),四邊形CEDF是菱形;(直接寫出答案,不需要說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是隨機(jī)抽取的某公司部分員工的月收入資料.

(1)請計(jì)算樣本的平均數(shù)和中位數(shù);

(2)甲乙兩人分別用樣本平均數(shù)和中位數(shù)來估計(jì)推斷公司全體員工月收入水平,請你寫出甲乙兩人的推斷結(jié)論;并指出誰的推斷比較科學(xué)合理,能直實(shí)地反映公司全體員工月收入水平。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016四川省成都市)如圖,在平面直角坐標(biāo)xOy中,正比例函數(shù)的圖象與反比例函數(shù)的圖象都經(jīng)過點(diǎn)A(2,﹣2).

(1)分別求這兩個(gè)函數(shù)的表達(dá)式;

(2)將直線OA向上平移3個(gè)單位長度后與y軸交于點(diǎn)B,與反比例函數(shù)圖象在第四象限內(nèi)的交點(diǎn)為C,連接AB,AC,求點(diǎn)C的坐標(biāo)及ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上兩點(diǎn)間的距離等于這兩個(gè)點(diǎn)所對(duì)應(yīng)的數(shù)的差的絕對(duì)值.例:點(diǎn)A、B在數(shù)軸上對(duì)應(yīng)的數(shù)分別為ab,則A、B兩點(diǎn)間的距離表示為AB|ab|.根據(jù)以上知識(shí)解題:

1)點(diǎn)A在數(shù)軸上表示3,點(diǎn)B在數(shù)軸上表示2,那么AB_______

2)在數(shù)軸上表示數(shù)a的點(diǎn)與﹣2的距離是3,那么a______

3)如果數(shù)軸上表示數(shù)a的點(diǎn)位于﹣42之間,那么|a+4|+|a2|______

4)對(duì)于任何有理數(shù)x|x3|+|x6|是否有最小值?如果有,直接寫出最小值.如果沒有.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義一種新運(yùn)算ab=2aab,比如1⊕(﹣3=2×1(﹣3=5

1)求(﹣2)⊕3的值;

2)若(﹣3)⊕x=x+1)⊕5,求x的值;

3)若x1=21y),求代數(shù)式2x+4y+1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為慶祝建國七十周年,南崗區(qū)準(zhǔn)備對(duì)某道路工程進(jìn)行改造,若請甲工程隊(duì)單獨(dú)做此工程需4個(gè)月完成,若請乙工程隊(duì)單獨(dú)做此工程需6個(gè)月完成,若甲、乙兩隊(duì)合作2個(gè)月后,甲工程隊(duì)到期撤離,則乙工程隊(duì)再單獨(dú)需幾個(gè)月能完成?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC 在平面直角坐標(biāo)系中的位置如圖(注: AB、C 均在格點(diǎn)上)

(1)請?jiān)趫D中作出ABC 關(guān)于 y 軸對(duì)稱的A1B1C1 ,并直接寫出A1B1C1 頂點(diǎn)的坐標(biāo);

(2)求A1B1C1 的面積;

(3)再將A1B1C1 向下平移 4 個(gè)單位長度,得到A2 B2C2 ,若點(diǎn) M m, n ABC 上一點(diǎn),請直接寫出 M A2 B2C2 上對(duì)應(yīng)點(diǎn) M 2 的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)問題解決往往經(jīng)歷發(fā)現(xiàn)猜想——探索歸納——問題解決的過程,下面結(jié)合一道幾何題來體驗(yàn)一下.

(發(fā)現(xiàn)猜想)(1)如圖①,已知∠AOB70°,∠AOD100°,OC為∠BOD的角平分線,則∠AOC的度數(shù)為 ;.

(探索歸納)(2)如圖①,∠AOBm,∠AODn,OC為∠BOD的角平分線. 猜想∠AOC的度數(shù)(用含m、n的代數(shù)式表示),并說明理由.

(問題解決)(3)如圖②,若∠AOB20°,∠AOC90°,∠AOD120°.若射線OB繞點(diǎn)O以每秒20°逆時(shí)針旋轉(zhuǎn),射線OC繞點(diǎn)O以每秒10°順時(shí)針旋轉(zhuǎn),射線OD繞點(diǎn)O每秒30°順時(shí)針旋轉(zhuǎn),三條射線同時(shí)旋轉(zhuǎn),當(dāng)一條射線與直線OA重合時(shí),三條射線同時(shí)停止運(yùn)動(dòng). 運(yùn)動(dòng)幾秒時(shí),其中一條射線是另外兩條射線夾角的角平分線?

查看答案和解析>>

同步練習(xí)冊答案