如圖1,矩形OABC頂點(diǎn)B的坐標(biāo)為(8,3),定點(diǎn)D的坐標(biāo)為(12,0),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸的正方向勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿x軸的負(fù)方向勻速運(yùn)動(dòng),PQ兩點(diǎn)同時(shí)運(yùn)動(dòng),相遇時(shí)停止.在運(yùn)動(dòng)過(guò)程中,以PQ為斜邊在x軸上方作等腰直角三角形PQR.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t= 時(shí),△PQR的邊QR經(jīng)過(guò)點(diǎn)B;
(2)設(shè)△PQR和矩形OABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)如圖2,過(guò)定點(diǎn)E(5,0)作EF⊥BC,垂足為F,當(dāng)△PQR的頂點(diǎn)R落在矩形OABC的內(nèi)部時(shí),過(guò)點(diǎn)R作x軸、y軸的平行線,分別交EF、BC于點(diǎn)M、N,若∠MAN=45°,求t的值.
解:(1)△PQR的邊QR經(jīng)過(guò)點(diǎn)B時(shí),△ABQ構(gòu)成等腰直角三角形,
∴AB=AQ,即3=4﹣t,
∴t=1.
即當(dāng)t=1秒時(shí),△PQR的邊QR經(jīng)過(guò)點(diǎn)B.
(2)①當(dāng)0≤t≤1時(shí),如答圖1﹣1所示.
設(shè)PR交BC于點(diǎn)G,
過(guò)點(diǎn)P作PH⊥BC于點(diǎn)H,則CH=OP=2t,GH=PH=3.
S=S矩形OABC﹣S梯形OPGC
=8×3﹣(2t+2t+3)×3
=﹣6t;
②當(dāng)1<t≤2時(shí),如答圖1﹣2所示.
設(shè)PR交BC于點(diǎn)G,RQ交BC、AB于點(diǎn)S、T.
過(guò)點(diǎn)P作PH⊥BC于點(diǎn)H,則CH=OP=2t,GH=PH=3.
QD=t,則AQ=AT=4﹣t,
∴BT=BS=AB﹣AQ=3﹣(4﹣t)=t﹣1.
S=S矩形OABC﹣S梯形OPGC﹣S△BST
=8×3﹣(2t+2t+3)×3﹣(t﹣1)2
=﹣t2﹣5t+19;
③當(dāng)2<t≤4時(shí),如答圖1﹣3所示.
設(shè)RQ與AB交于點(diǎn)T,則AT=AQ=4﹣t.
PQ=12﹣3t,∴PR=RQ=(12﹣3t).
S=S△PQR﹣S△AQT
=PR2﹣AQ2
=(12﹣3t)2﹣(4﹣t)2
=t2﹣14t+28.
綜上所述,S關(guān)于t的函數(shù)關(guān)系式為:
S=.
(3)∵E(5,0),∴AE=AB=3,
∴四邊形ABFE是正方形.
如答圖2,將△AME繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABM′,其中AE與AB重合.
∵∠MAN=45°,∴∠EAM+∠NAB=45°,
∴∠BAM′+∠NAB=45°,
∴∠MAN=∠M′AN.
連接MN.在△MAN與△M′AN中,
∴△MAN≌△M′AN(SAS).
∴MN=M′N=M′B+BN
∴MN=EM+BN.
設(shè)EM=m,BN=n,則FM=3﹣m,F(xiàn)N=3﹣n.
在Rt△FMN中,由勾股定理得:FM2+FN2=MN2,即(3﹣m)2+(3﹣n)2=(m+n)2,
整理得:mn+3(m+n)﹣9=0. ①
延長(zhǎng)MR交x軸于點(diǎn)S,則m=EM=RS=PQ=(12﹣3t),
∵QS=PQ=(12﹣3t),AQ=4﹣t,
∴n=BN=AS=QS﹣AQ=(12﹣3t)﹣(4﹣t)=2﹣t.
∴m=3n,
代入①式,化簡(jiǎn)得:n2+4n﹣3=0,
解得n=﹣2+或n=﹣2﹣(舍去)
∴2﹣t=﹣2+
解得:t=8﹣2.
∴若∠MAN=45°,則t的值為(8﹣2)秒
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
國(guó)家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,低排量的汽車比較暢銷,某汽車經(jīng)銷商購(gòu)進(jìn)、兩種型號(hào)的低排量汽車,其中型汽車的進(jìn)貨單價(jià)比型汽車的進(jìn)貨單價(jià)多2萬(wàn)元;花50萬(wàn)元購(gòu)進(jìn)型汽車的數(shù)量與花40萬(wàn)元購(gòu)進(jìn)型汽車的數(shù)量相同.銷售中發(fā)現(xiàn)型汽車的每周銷量 (臺(tái))與售價(jià)(萬(wàn)元/臺(tái))滿足函數(shù)關(guān)系,型汽車的每周銷量 (臺(tái))與售價(jià)(萬(wàn)元/臺(tái))滿足函數(shù)關(guān)系
(1)求、兩種型號(hào)的汽車的進(jìn)貨單價(jià);
(2)已知型汽車的售價(jià)比型汽車的售價(jià)高2萬(wàn)元/臺(tái).設(shè)型汽車售價(jià)為萬(wàn)元/臺(tái),每周銷售這兩種車的總利潤(rùn)為萬(wàn)元,求與的函數(shù)關(guān)系式, 、兩種型號(hào)的汽車售價(jià)各為多少時(shí),每周銷售這兩種汽車的總利潤(rùn)最大?最大利潤(rùn)是多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某公司為了解員工對(duì)“六五”普法知識(shí)的知曉情況,從本公司隨機(jī)選取40名員工進(jìn)行普法知識(shí)考查,對(duì)考查成績(jī)進(jìn)行統(tǒng)計(jì)(成績(jī)均為整數(shù),滿分100分),并依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計(jì)表.解答下列問(wèn)題:
組別 | 分?jǐn)?shù)段/分 | 頻數(shù)/人數(shù) | 頻率 |
1 | 50.5~60.5 | 2 | a |
2 | 60.5~70.5 | 6 | 0.15 |
3 | 70.5~80.5 | b | c |
4 | 80.5~90.5 | 12 | 0.30 |
5 | 90.5~100.5 | 6 | 0.15 |
合計(jì) | 40 | 1.00 |
(1)表中a= ,b= ,c= ;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)該公司共有員工3000人,若考查成績(jī)80分以上(不含80分)為優(yōu)秀,試估計(jì)該公司員工“六五”普法知識(shí)知曉程度達(dá)到優(yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知兩圓半徑分別為3 ,5 ,圓心距為7 ,則這兩圓的位置關(guān)系為( )
A. 相交 B.外切 C.內(nèi)切 D.外離
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系中,二次函數(shù)的圖像與軸交于點(diǎn)A,B(點(diǎn)B在點(diǎn)A的左側(cè)),與軸交于點(diǎn)C.過(guò)動(dòng)點(diǎn)H(0, )作平行于軸的直線,直線與二次函數(shù)的圖像相交于點(diǎn)D,E.
(1)寫(xiě)出點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)若,以DE為直徑作⊙Q,當(dāng)⊙Q與軸相切時(shí),求的值;
(3)直線上是否存在一點(diǎn)F,使得△ACF是等腰直角三角形?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com