在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,對角線AC與BD相交于點(diǎn)O,線段OA,OB的中點(diǎn)分別為E,F(xiàn).
(1)求證:△FOE≌△DOC;
(2)求sin∠OEF的值;
(3)若直線EF與線段AD,BC分別相交于點(diǎn)G,H,求的值.

【答案】分析:(1)由EF是△OAB的中位線,利用中位線定理,得EF∥AB,EF=AB,又CD∥AB,CD=AB,可得EF=CD,由平行線的性質(zhì)可證△FOE≌△DOC;
(2)由平行線的性質(zhì)可知∠OEF=∠CAB,利用sin∠OEF=sin∠CAB=,由勾股定理得出AC與BC的關(guān)系,再求正弦值;
(3)由(1)可知AE=OE=OC,EF∥CD,則△AEG∽△ACD,利用相似比可得EG=CD,同理得FH=CD,又AB=2CD,代入中求值.
解答:(1)證明:∵EF是△OAB的中位線,
∴EF∥AB,EF=AB,
而CD∥AB,CD=AB,
∴EF=CD,∠OEF=∠OCD,∠OFE=∠ODC,
∴△FOE≌△DOC;

(2)解:∵EF∥AB,
∴∠OEF=∠CAB,
∵在Rt△ABC中,AC===BC,
∴sin∠OEF=sin∠CAB===

(3)解:∵AE=OE=OC,EF∥CD,
∴△AEG∽△ACD,
==,即EG=CD,
同理FH=CD,
==
點(diǎn)評:本題綜合考查了全等三角形、相似三角形的判定與性質(zhì),勾股定理,中位線定理,銳角三角函數(shù)定義的運(yùn)用.關(guān)鍵是由全等、相似得出相關(guān)線段之間的位置關(guān)系,數(shù)量關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在直角梯形ABCD中,∠B=90°,DC∥AB,動點(diǎn)P從B點(diǎn)出發(fā),由B→C→D→A沿邊運(yùn)動,設(shè)點(diǎn)P運(yùn)動的路程為x,△ABP的面積為y,若關(guān)于y與x的函數(shù)圖象如圖②,求梯形ABCD的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,若AD=8,BC=10,則cosC的值為( 。
A、
4
5
B、
3
5
C、
3
4
D、
4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AD∥BC,AB⊥BC,且AB=BC=4AD,E是AB上的一點(diǎn),DE⊥EC.求證:CE平分∠BCD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,∠A=∠B=90°,∠C=45°,AB=4,AD=5,把梯形沿過點(diǎn)D的直線折疊,使點(diǎn)A剛好落在BC邊上,則此時折痕的長為
5
5
2
或2
5
5
5
2
或2
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,若AD=5,點(diǎn)A的坐標(biāo)為(-2,7),則點(diǎn)D的坐標(biāo)為( 。

查看答案和解析>>

同步練習(xí)冊答案