【題目】根據(jù)提示填空(8分)

如圖,EFAD,1=2,BAC=80°.將求∠AGD的過程填寫完整.

因為EFAD

所以∠2=____(____________________________)

又因為∠1=2

所以∠1=3(______________)

所以AB_____(_____________________________)

所以∠BAC+______=180°(_____________________)

因為∠BAC=80° 所以∠AGD=_______

【答案】見解析.

【解析】分析:根據(jù)平行線的性質(zhì)推出∠1=2=3,推出ABDG,根據(jù)平行線的性質(zhì)得出 代入求出即可.

詳解:∵EFAD

∴∠2=3(兩直線平行,同位角相等),

∵∠1=2,

∴∠1=3(等量代換),

ABDG(內(nèi)錯角相等,兩直線平行),

(兩直線平行,同旁內(nèi)角互補),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O是以BC為直徑的△ABC的外接圓,OP∥AC,且與BC的垂線交于點P,OP交AB于點D,BC、PA的延長線交于點E.
(1)求證:PA是⊙O的切線;
(2)若sinE= ,PA=6,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板中的兩塊直角三角尺的直角頂點C按如圖所示的方式疊放在一起.

,則的度數(shù)為______;

,求的度數(shù);

猜想之間存在什么數(shù)量關(guān)系?并說明理由;

當(dāng)且點E在直線AC的上方時,這兩塊三角尺是否存在ADBC平行的情況?若存在,請直接寫出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列日,F(xiàn)象:

用兩根釘子就可以把一根木條固定在墻上;

把彎曲的公路改直,就能夠縮短路程;

利用圓規(guī)可以比較兩條線段的大。

建筑工人砌墻時,經(jīng)常先在兩端立樁拉線,然后沿著線砌墻.

其中,可以用“兩點確定一條直線”來解釋的現(xiàn)象是( 。

A.①④B.②③C.①②④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】這個周末,七年級準(zhǔn)備組織觀看電影《我和我的祖國》,由各班班長負責(zé)買票,一班班長問售票員買團體票是否可以優(yōu)惠,售票員說:50人以上的團體票有兩個優(yōu)惠方案可選擇:

方案一:全體人員可打8折;

方案二:若打9折,有6人可以免票.

一班班長思考了一會兒,說我們班無論選擇哪種方案要付的錢是一樣的,請問一班有幾人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣ x2+bx+c與x軸交于A、D兩點,與y軸交于點B,四邊形OBCD是矩形,點A的坐標(biāo)為(1,0),點B的坐標(biāo)為(0,4),已知點E(m,0)是線段DO上的動點,過點E作PE⊥x軸交拋物線于點P,交BC于點G,交BD于點H.

(1)求該拋物線的解析式;
(2)當(dāng)點P在直線BC上方時,請用含m的代數(shù)式表示PG的長度;
(3)在(2)的條件下,是否存在這樣的點P,使得以P、B、G為頂點的三角形與△DEH相似?若存在,求出此時m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,由一些完全相同的小正方體搭成的幾何體的俯視圖和左視圖,組成這個幾何體的小正方體的個數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程組解應(yīng)用題

為了保護環(huán)境,深圳某公交公司決定購買一批共10臺全新的混合動力公交車,現(xiàn)有A、B兩種型號,其中每臺的價格,年省油量如下表:

A

B

價格(萬元/臺)

a

b

節(jié)省的油量(萬升/年)

2.4

2

經(jīng)調(diào)查,購買一臺A型車比購買一臺B型車多20萬元,購買2A型車比購買3B型車少60萬元.

1)請求出ab;

2)若購買這批混合動力公交車每年能節(jié)省22.4萬汽油,求購買這批混合動力公交車需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,△ABC的頂點都在網(wǎng)格點上,其中C點坐標(biāo)為(1 ,2).

(1)寫出點A、B的坐標(biāo):A , )、B ,

(2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A'B'C',則△A'B'C'的三個頂點坐標(biāo)分別是A' , )、B' 、 )、 C' 、

(3)計算△ABC的面積

查看答案和解析>>

同步練習(xí)冊答案