【題目】如圖,小華剪了兩條寬均為的紙條,交叉疊放在一起,且它們的交角為,則它們重疊部分的面積為( )
A. B. C. D.
【答案】D
【解析】
過A作AE⊥BC于E,AF⊥CD于F,則AE=AF=,∠AEB=∠AFD=90°,求出四邊形ABCD是平行四邊形,證出△AEB≌△AFD,推出AB=AD,求出四邊形ABCD是菱形,根據(jù)菱形的性質(zhì)得出AB=BC,解直角三角形求出AB,根據(jù)菱形的面積公式求出即可.
過A作AE⊥BC于E,AF⊥CD于F,則AE=AF=,∠AEB=∠AFD=90°.
∵AD∥BC,AB∥CD,∴四邊形ABCD是平行四邊形,∴∠ABE=∠ADF=60°.
在△AEB和△AFD中,∵,∴△AEB≌△AFD,∴AB=AD,∴四邊形ABCD是菱形,∴AB=BC.
在Rt△AEB中,∠AEB=90°,AE=,∠ABE=60°,∴BE==1,AB==2,∴BC=AB=2,∴重疊部分的面積是BC×AE=2.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】某學校為評估學生整理錯題集的質(zhì)量情況,進行了抽樣調(diào)查,把學生整理錯題集的質(zhì)量分為“非常好”、“較好”、“一般”、“不好”四個等級,根據(jù)調(diào)查結果繪制了下面兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了 名學生;
(2)扇形統(tǒng)計圖中,m= ,“非常好”部分所在扇形的圓心角度數(shù)為 ;
(3)補全條形統(tǒng)計圖;
(4)如果4名學生整理錯題集的質(zhì)量情況是:3人“較好”,1人“一般”,現(xiàn)從中隨機抽取2人,請用列表或畫樹狀圖的方法求出兩人都是“較好”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)某種零件,每個零件的成本為40元,出廠單價為60元,該廠為鼓勵銷售商訂購,制定了促銷條件:當一次訂購量超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低0.02元.
(1)若銷售商一次訂購x(x>100)個零件,直接寫出零件的實際出廠單價y(元)?
(2)設銷售商一次訂購x(x>100)個零件時,工廠獲得的利潤為W元(W>0).
①求出W(元)與x(個)之間的函數(shù)關系式及自變量x的取值范圍;并算出銷售商一次訂購多少個零件時,廠家可獲得利潤6000元;
②廠家為了達到既鼓勵銷售商訂購又保證自己能獲取最大利潤的目的,重新制定新促銷條件:在原有的基礎上又增加了限制條件﹣﹣銷售商訂購的全部零件的實際出廠單價不能低于a(元).請你利用函數(shù)及其圖象的性質(zhì)求出a的值;并寫出實行新促銷條件時W(元)與x(個)之間的函數(shù)關系式及自變量x的取值范圍.(工廠出售一個零件利潤=實際出廠單價﹣每個零件的成本)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點P,Q分別是等邊△ABC邊AB,BC上的動點(端點除外),點P從頂點A、點Q從頂點B同時出發(fā),且它們的運動速度相同,連接AQ,CP交于點M.
(1)求證:△ABQ△CAP;
(2)如圖1,當點P,Q分別在AB,BC邊上運動時,∠QMC變化嗎?若變化,請說明理由;若不變,求出它的度數(shù).
(3)如圖2,若點P,Q在分別運動到點B和點C后,繼續(xù)在射線AB,BC上運動,直線AQ,CP交點為M,則∠QMC= 度.(直接填寫度數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,,以斜邊上距離點的點為中心,把這個三角形按逆時針方向旋轉(zhuǎn)至,則旋轉(zhuǎn)前后兩個三角形重疊部分的面積是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點坐標為,點坐標為,動點從點開始沿以每秒個單位長度的速度向點移動,動點從點開始沿以每秒個單位長度的速度向點移動.如果、分別從、同時出發(fā),用(秒)表示移動的時間,那么:
當為何值時,四邊形是梯形,此時梯形的面積是多少?
當為何值時,以點、、為頂點的三角形與相似?
若設四邊形的面積為,試寫出與的函數(shù)關系式,并求出取何值時,四邊形的面積最?
在軸上是否存在點,使點、在移動過程中,以、、、為頂點的四邊形的面積是一個常數(shù)?若存在請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為美化校園,準備在長35米,寬20米的長方形場地上,修建若干條寬度相同的道路,余下部分作草坪,并請全校學生參與方案設計,現(xiàn)有3位同學各設計了一種方案,圖紙分別如圖l、圖2和圖3所示(陰影部分為草坪).
請你根據(jù)這一問題,在每種方案中都只列出方程不解.
①甲方案設計圖紙為圖l,設計草坪的總面積為600平方米.
②乙方案設計圖紙為圖2,設計草坪的總面積為600平方米.
③丙方案設計圖紙為圖3,設計草坪的總面積為540平方米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中AB=,BC=1,將矩形ABCD繞頂點B旋轉(zhuǎn)得到矩形A'BC'D,點A恰好落在矩形ABCD的邊CD上,則AD掃過的部分(即陰影部分)面積為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com