【題目】如圖,四邊形中,,上一點(diǎn),且、分別平分.

(1)求證:;

(2),,求四邊形的面積.

【答案】1)見解析;(212.

【解析】

1)延長(zhǎng)AE,BC交于M,根據(jù)AE、BE分別平分∠BAD、∠ABC,可得出∠AEB=90°,利用ASA證明△ABE≌△MBE,得出AE=ME后,再證明△ADE≌△MCE,即可得出結(jié)論.

2)根據(jù)S四邊形ABCD=SABM=2SABE,即可得出答案.

(1)如圖,延長(zhǎng)AE,BC交于M,

ADBC,

∴∠DAB+ABC=180,

又∵AE、BE分別平分∠BAD、∠ABC

∴∠DAE=EAB,∠ABE=MBE

∴∠EAB+ABE==90,

∴∠BEA=BEM=90゜,

在△ABE和△MBE,

∴△ABE≌△MBEASA),

AE=ME

ADBC

∴∠D=ECM

在△ADE和△MCE,

∴△ADE≌△MCEAAS),

CE=DE.

(2)SABE=AE·BE=6

∵△ADE≌△MCE,AE=ME

S四邊形ABCD=SABM=2SABE=12.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:像(+)()=3,aa≥0),(+1)(1)=b1b≥0),……,這種兩個(gè)含二次根式的代數(shù)式相乘,積不含二次根式,我們稱這兩個(gè)代數(shù)式互為有理化因式例如:,+112+323等都是互為有理化因式,在進(jìn)行二次根式計(jì)算時(shí),利用有理化因式,可以化去分母中的根號(hào).

例如:;

解答下列問題:

13   互為有理化因式,將分母有理化得   

2)計(jì)算:2

3)觀察下面的變形規(guī)律并解決問題.

1,,,,若n為正整數(shù),請(qǐng)你猜想:   

②計(jì)算:(+++…+×+1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,A(﹣4,0),點(diǎn)Cy軸正半軸上的一點(diǎn),且∠ACB90°,ACBC

1)如圖①,若點(diǎn)B在第四象限,C0,2),求點(diǎn)B的坐標(biāo);

2)如圖②,若點(diǎn)B在第二象限,以OC為直角邊在第一象限作等腰RtCOF,連接BF,交y軸于點(diǎn)M,求CM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義直線為拋物線、b、c為常數(shù),夢(mèng)想直線;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其夢(mèng)想三角形”.

已知拋物線與其夢(mèng)想直線交于A、B兩點(diǎn)點(diǎn)A在點(diǎn)B的左側(cè),與x軸負(fù)半軸交于點(diǎn)C

填空:該拋物線的夢(mèng)想直線的解析式為______,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;

如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將AM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若為該拋物線的夢(mèng)想三角形,求點(diǎn)N的坐標(biāo);

當(dāng)點(diǎn)E在拋物線的對(duì)稱軸上運(yùn)動(dòng)時(shí),在該拋物線的夢(mèng)想直線上,是否存在點(diǎn)F,使得以點(diǎn)A、CE、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙二人同時(shí)從A地出發(fā),沿同一條道路去B地,途中都使用兩種不同的速度VlV2(Vl<V2),甲用一半的路程使用速度Vl、另一半的路程使用速度V2;乙用一半的時(shí)間使用速度Vl、另一半的時(shí)間使用速度V2;關(guān)于甲乙二人從A地到達(dá)B地的路程與時(shí)間的函數(shù)圖象及關(guān)系,有圖中4個(gè)不同的圖示分析.其中橫軸t表示時(shí)間,縱軸s表示路程,其中正確的圖示分析為( 。

A. 圖(1) B. 圖(1)或圖(2) C. 圖(3) D. 圖(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x、y的方程組,其中﹣3≤a≤1,給出下列結(jié)論:

是方程組的解;

②當(dāng)a=﹣2時(shí),x+y=0;

③若y≤1,則1≤x≤4;

④若S=3x﹣y+2a,則S的最大值為11.

其中正確的有_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮和小剛進(jìn)行賽跑訓(xùn)練,他們選擇了一個(gè)土坡,按同一路線同時(shí)出發(fā),從坡腳跑到坡頂再原路返回坡腳.他們倆上坡的平均速度不同,下坡的平均速度則是各自上坡平均速度的1.5倍.設(shè)兩人出發(fā)xmin后距出發(fā)點(diǎn)的距離為y m.圖中折線表示小亮在整個(gè)訓(xùn)練中yx的函數(shù)關(guān)系,其中A點(diǎn)在x軸上,M點(diǎn)坐標(biāo)為(2,0)

1A點(diǎn)所表示的實(shí)際意義是 ; ;

2)求出AB所在直線的函數(shù)關(guān)系式;

3)如果小剛上坡平均速度是小亮上坡平均速度

的一半,那么兩人出發(fā)后多長(zhǎng)時(shí)間第一次相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小華剪了兩條寬均為的紙條,交叉疊放在一起,且它們的交角為,則它們重疊部分的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB邊的中點(diǎn),沿EC對(duì)折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,連結(jié)AP并延長(zhǎng)APCDF點(diǎn),連結(jié)CP并延長(zhǎng)CPADQ點(diǎn).給出以下結(jié)論:

①四邊形AECF為平行四邊形;

②∠PBA=APQ;

③△FPC為等腰三角形;

④△APB≌△EPC.

其中正確結(jié)論的個(gè)數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案