【題目】某蔬菜加工公司先后兩次收購(gòu)某時(shí)令蔬菜200噸,第一批蔬菜價(jià)格為2000元/噸,因蔬菜大量上市,第二批收購(gòu)時(shí)價(jià)格變?yōu)?/span>500元/噸,這兩批蔬菜共用去16萬(wàn)元.
(1)求兩批次購(gòu)蔬菜各購(gòu)進(jìn)多少?lài)崳?/span>
(2)公司收購(gòu)后對(duì)蔬菜進(jìn)行加工,分為粗加工和精加工兩種:粗加工每噸利潤(rùn)400元,精加工每噸利潤(rùn)800元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤(rùn),精加工數(shù)量應(yīng)為多少?lài)?最大利?rùn)是多少?
【答案】(1)第一次購(gòu)進(jìn)40噸,第二次購(gòu)進(jìn)160噸;(2)為獲得最大利潤(rùn),精加工數(shù)量應(yīng)為150噸,最大利潤(rùn)是140000.
【解析】
(1)設(shè)第一批購(gòu)進(jìn)蒜薹a噸,第二批購(gòu)進(jìn)蒜薹b噸.構(gòu)建方程組即可解決問(wèn)題.
(2)設(shè)精加工x噸,利潤(rùn)為w元,則粗加工(100-x)噸.利潤(rùn)w=800x+400(200﹣x)=400x+80000,再由x≤3(100-x),解得x≤150,即可解決問(wèn)題.
(1)設(shè)第一次購(gòu)進(jìn)a噸,第二次購(gòu)進(jìn)b噸,
,
解得,,
答:第一次購(gòu)進(jìn)40噸,第二次購(gòu)進(jìn)160噸;
(2)設(shè)精加工x噸,利潤(rùn)為w元,
w=800x+400(200﹣x)=400x+80000,
∵x≤3(200﹣x),
解得,x≤150,
∴當(dāng)x=150時(shí),w取得最大值,此時(shí)w=140000,
答:為獲得最大利潤(rùn),精加工數(shù)量應(yīng)為150噸,最大利潤(rùn)是140000.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)經(jīng)過(guò)點(diǎn),,三點(diǎn).
求此拋物線(xiàn)的解析式;
若點(diǎn)是線(xiàn)段上的點(diǎn)(不與,重合),過(guò)作軸交拋物線(xiàn)于,設(shè)點(diǎn)的橫坐標(biāo)為,請(qǐng)用含的代數(shù)式表示的長(zhǎng);
在的條件下,連接,,是否存在點(diǎn),使的面積最大?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在7×7網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1.
(1)若點(diǎn)A(1,3),C(2,1), ①建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系;②點(diǎn)B的坐標(biāo)為( , );
(2)判斷△ABC的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,1),C(﹣2,﹣1).
(1)在圖中作出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1,寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo)(直接寫(xiě)答案).
(2)△A1B1C1的面積為 .
(3)在y軸上畫(huà)出點(diǎn)Q,使△QAB的周長(zhǎng)最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)A、點(diǎn)B分別是y軸、x軸上兩個(gè)動(dòng)點(diǎn),直角邊AC交x軸于點(diǎn)D,斜邊BC交y軸于點(diǎn)E;
(1)如圖(1),已知C點(diǎn)的橫坐標(biāo)為-1,直接寫(xiě)出點(diǎn)A的坐標(biāo);
(2)如圖(2), 當(dāng)?shù)妊?/span>Rt△ABC運(yùn)動(dòng)到使點(diǎn)D恰為AC中點(diǎn)時(shí),連接DE,求證:∠ADB=∠CDE;
(3)如圖(3), 若點(diǎn)A在x軸上,且A(-4,0),點(diǎn)B在y軸的正半軸上運(yùn)動(dòng)時(shí),分別以OB、AB為直角邊在第一、二象限作等腰直角△BOD和等腰直角△ABC,連結(jié)CD交y軸于點(diǎn)P,問(wèn)當(dāng)點(diǎn)B在y軸的正半軸上運(yùn)動(dòng)時(shí),BP的長(zhǎng)度是否變化?若變化請(qǐng)說(shuō)明理由,若不變化,請(qǐng)求出BP的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD為邊BC上的中線(xiàn),點(diǎn)E在AD上,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)弧,交BE的延長(zhǎng)線(xiàn)于點(diǎn)F,點(diǎn)G在EF上,且∠EAG=∠CAF,連接CE.
(1)依題意補(bǔ)全圖形;
(2)求證:FG=CE;
(3)若EF平分∠AEC,則∠BAE與∠ABE滿(mǎn)足的等量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校決定在學(xué)生中開(kāi)設(shè):A、實(shí)心球;B、立定跳遠(yuǎn);C、跳繩;D、跑步四種活動(dòng)項(xiàng)目.為了了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:
(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)請(qǐng)計(jì)算本項(xiàng)調(diào)查中喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整.
(3)若調(diào)查到喜歡“跳繩”的5名學(xué)生中有2名男生,3名女生,現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生,請(qǐng)用畫(huà)樹(shù)狀圖或列表法求出剛好抽到不同性別學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,,連接,為上一點(diǎn),連接,過(guò)點(diǎn)作交于點(diǎn),則圖中的全等三角形共有( )
A.4對(duì)B.3對(duì)C.2對(duì)D.1對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D,E,F分別在邊BC,AC,AB上,且BD=CE,DC=BF,連結(jié)DE,EF,DF,∠1=60°
(1)求證:△BDF≌△CED.
(2)判斷△ABC的形狀,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com